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Adversarial Self-Supervised Learning for Secure
and Robust Urban Region Profiling
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Abstract—Urban region profiling is essential for forecasting
and decision-making in dynamic and noisy urban environ-
ments. However, existing approaches struggle with adversarial
attacks, data incompleteness, and security vulnerabilities, which
undermine predictive accuracy and reliability. This paper
introduces Enhanced Urban Region Profiling with Adversarial
Self-Supervised Learning (EUPAS), a robust framework that
integrates adversarial contrastive learning with self-supervised
and supervised objectives. To fortify resilience against adversarial
attacks and noisy data, we introduce perturbation augmentation,
a trickster generator, and a deviation copy generator, which col-
lectively enhance the robustness of learned embeddings. EUPAS
significantly outperforms state-of-the-art models in forecasting
tasks, including crime prediction, check-in prediction, and land
usage classification, achieving up to 12.2% improvement in
forecasting performance. Additionally, our model demonstrates
superior resilience against transfer-based black-box and white-
box attacks compared to baseline models. By addressing key
security challenges in data-driven urban modeling, EUPAS pro-
vides a scalable and adversarially robust solution for smart city
applications.

Index Terms—Urban region profiling, adversarial contrastive
learning, robust forecasting, adversarial attacks, smart city
security.

I. INTRODUCTION

URBAN region profiling plays a fundamental role in
urban management, enabling critical tasks such as traffic

forecasting, socio-demographic analysis, and crime prediction.
The rapid expansion of urban sensor networks and the increas-
ing availability of multi-source urban data (e.g., mobility
records, Points of Interest (POIs), and socio-economic indica-
tors) have significantly enhanced the potential for data-driven
decision-making [1], [2], [3]. However, the high-dimensional,
heterogeneous, and noisy nature of urban data, coupled with
the increasing vulnerability of smart city systems to adversarial
attacks, poses significant challenges for robust and secure
urban forecasting.

Existing urban region embedding models have been widely
applied in prediction tasks such as crime forecasting [4],
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socio-demographic analysis [5], and land usage classification
[6]. Recently, deep learning-based approaches have shown
promising results in urban region profiling. MV-PN [7] intro-
duced a region embedding model that captures intra- and
inter-regional similarities using POI networks and spatial
autocorrelation layers. CGAL [8] extended this idea by incor-
porating collective adversarial training, while MVGRE [9]
leveraged multi-view joint learning to enhance region repre-
sentations. MGFN [10] focused on traffic pattern extraction but
overlooked POI data, which is crucial for capturing regional
functionalities. ROMER [11] improved urban region embed-
dings by modeling long-range dependencies through a global
attention graph network, while HREP [12] introduced prefix-
tuning to enhance adaptability in downstream tasks. Despite
their advancements, these models struggle with suboptimal
embeddings caused by inevitable noise and data incom-
pleteness in urban region profiling. To address these issues,
contrastive learning has emerged as a promising solution by
learning robust representations without extensive labeled data
[13], [14], [15].

However, contrastive learning in the context of urban region
modeling still faces critical challenges. One major obstacle
lies in the generation of semantically meaningful augmented
samples for contrastive learning. Traditional strategies such as
random cropping or feature masking are often unsuitable for
urban settings, where they can disrupt key spatial relationships.
For instance, as illustrated in Fig. 1, replacing a POI (e.g., a
café) with a nearby location (e.g., a restaurant or shopping
mall) can fundamentally alter the semantics of a mobility
pattern, thereby misleading the model and degrading repre-
sentation quality. These distortions hinder the effectiveness of
contrastive training and reduce generalization performance in
downstream tasks.

Furthermore, existing studies overlook a critical aspect in
urban analytics: security. Graph Neural Networks (GNNs),
which form the core of most region representation models,
are inherently vulnerable to adversarial perturbations. Small
but imperceptible changes in node features or graph structure
often guided by gradient information can drastically change
prediction outcomes [16]. This fragility poses a serious threat
in high-stakes urban applications such as crime prediction or
traffic forecasting, where model failures can lead to dangerous
real-world consequences.

Given these limitations, there is a pressing need for more
robust and secure learning frameworks. Adversarial con-
trastive learning has emerged as a promising paradigm in
domains like computer vision [17], [18], [19] and natural
language processing [20], where it has demonstrated improved
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Fig. 1. Difficulties in data augmentation for urban data: (a) Implacability of geographic neighbor sets; (b) Replacing a POI (e.g., a café) with a nearby location
(e.g., a restaurant or shopping center) fundamentally changes the semantics and purpose of the trip, distorting the model’s learning process.

resistance to distributional shifts and malicious attacks. By
integrating adversarial perturbations into the contrastive learn-
ing process, models can learn more resilient features that
withstand both noise and targeted manipulation.

However, applying adversarial contrastive learning to urban
region profiling presents new challenges. Urban data is
inherently heterogeneous and multi-relational, consisting of
mobility flows, POI distributions, and geographic struc-
tures. Ensuring semantic consistency across these modalities
while preserving relational integrity under adversarial settings
remains an open problem. Most existing frameworks are not
designed to address such complex structural and semantic
interactions, leading to poor robustness in noisy or adversarial
environments.

To address these challenges, we propose EUPAS (Enhanced
Urban Region Profiling with Adversarial Self-Supervised
Learning), a novel framework that explicitly enhances security,
robustness, and adaptive learning in urban profiling tasks. Our
key innovations include:

(1) Perturbation-Aware Data Augmentation. To mitigate
adversarial vulnerabilities, EUPAS introduces a perturbation
augmentation module, which injects targeted adversarial noise
during training to enhance model resilience against security
threats.

(2) Deviation Copy Generator for Semantic-Preserving
Augmentation. To address the limitations of conventional data
augmentation, EUPAS employs a Deviation Copy Genera-
tor that constructs semantically meaningful positive samples,
preventing erroneous augmentations that alter urban region
semantics and avoiding distortions that could compromise
model learning.

(3) Trickster Generator for Hard Negative Sample Con-
struction. To improve the robustness of urban embeddings,
EUPAS introduces the Trickster Generator, which not only
automatically synthesizes more difficult negative samples,
enhancing the model’s ability to distinguish urban regions even
under distribution shifts, but also ensures structural stability by
preserving the relationships between nodes.

The contributions of this paper are summarized as follows.
• General Aspect. We propose EUPAS, the first security-

aware adversarial self-supervised learning framework for
urban region profiling. EUPAS addresses key challenges
in adversarial robustness, data augmentation, and multi-
source data fusion, enhancing the reliability of urban
forecasting systems.

• Methodologies. We introduce a perturbation-aware aug-
mentation strategy comprising two novel modules: the
Deviation Copy Generator, which produces seman-
tically consistent positive samples, and the Trickster
Generator, which crafts hard negative samples. This
design improves the model’s robustness to adversarial
attacks while preserving the semantic and structural
integrity of urban data.

• Experimental Evaluation. Extensive experiments on
two real-world urban datasets demonstrate that EUPAS
achieves superior performance across tasks such as
check-in prediction, land usage classification, and crime
forecasting. It achieves up to a 12.2% improvement
in prediction accuracy. In terms of adversarial robust-
ness, EUPAS outperforms state-of-the-art models under
both white-box and black-box attack settings, exhibiting
stronger resilience and better transferability.

II. RELATED WORK

A. Graph Neural Networks for Region Representation

GNNs have become foundational in urban graph modeling.
RGCN [21] and HetGNN [22] extend Graph Convolutional
Networks (GCNs) to heterogeneous settings, well-suited for
urban data fusion. GraphSAGE [23] and GAT [24] further
enable inductive learning and attention-based message passing.
However, most GNNs presume reliable graph structures and
are vulnerable to adversarial attacks involving subtle modi-
fications to edges or features [25]. Defense approaches like
AD-GCL [26] and RGCN [27] attempt to address this but are
primarily designed for homogeneous graphs. In contrast, our
approach considers adversarial resilience in noisy, heteroge-
neous urban graphs by designing two generative modules to
produce hard positive and negative samples.

B. Region Representation Learning

With the increasing availability and scale of urban data
sources, research on learning urban region representations has
expanded, primarily into single and multiple data sources.
Regional human mobility data is commonly used as a single
data source to mine inter-regional correlations. For example,
HDGE [4] constructs flow and spatial graphs to learn region
embeddings through human mobility. ZE-Mob [6] extracts
mobility patterns from taxi trajectories and learns region
embeddings using source-destination co-occurrences. MGFN
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[10] analyzes mobility data from different periods to build
mobility patterns for region embedding. Methods integrat-
ing multiple urban data sources offer more comprehensive
regional attributes, leading to richer region embeddings. MV-
PN [7] constructs graph representations of inter-region human
mobility data and intra-region POIs, using them as initial
vectors in an AutoEncoder to learn final region embed-
dings. CGAL [8] enhances embedding learning by connecting
multiple graphs through a network-based strategy. MVGRE
[9] improves performance by building region-based graphs
from various data sources and employing a multi-view fusion
mechanism. Region2Vec [28] leverages knowledge graphs to
explore global and local correlations in multi-source data,
boosting region representation learning. ROMER [11] excels
by capturing multi-view dependencies from diverse data
sources, using global graph attention networks and a dual-stage
fusion module. Recently, HREP [12] introduced prefix prompt
learning from NLP to optimize and guide downstream tasks
automatically.

Despite these advances, many of these methods assume
clean data and lack resilience to adversarial perturbations.
Though adversarial augmentation [29] and robust contrastive
learning [30] have shown promise, their direct application in
urban analytics remains limited. Our work addresses this gap
by explicitly modeling structured adversarial signals in region-
level contrastive learning.

C. Adversarial Contrastive Learning

Contrastive learning has shown strong potential in unsuper-
vised graph representation [31], [32], but remains susceptible
to adversarial perturbations [26], [33]. Adversarial training
(AT) [34] has emerged as a reliable defense mechanism, train-
ing models directly on perturbed data to enhance robustness
[35], [36].

Several prior works have explored the integration of AT
into contrastive frameworks. RoCL [37] was among the first
to introduce adversarial instance-level perturbations in self-
supervised contrastive learning, crafting hard positives to
strengthen feature discrimination without requiring labels.
GASSL [16] extended these ideas to the graph domain, propos-
ing automated adversarial views to avoid manual augmentation
heuristics. In the vision domain, Chen et al. [17] studied the
effect of pretraining under adversarial contrastive objectives
and highlighted the impact on downstream robustness. Simi-
larly, Fan et al. [19] examined robustness transferability from
pretraining to finetuning and provided theoretical insights into
when adversarial invariance is preserved.

Beyond vision and graphs, adversarial contrastive learning
has also been applied to language models. ARE [20] demon-
strated improved generalization and robustness bounds in
pre-trained LLMs under adversarial noise. These developments
collectively underscore the importance of contrastive super-
vision under adversarial conditions, motivating our tailored
adversarial contrastive framework for multi-relation urban
graphs. In contrast to prior work such as RoCL [37], GASSL
[16], which focus on instance-level adversarial views in uni-
modal settings, our approach introduces relationally structured
perturbations over multi-relational urban graphs, enabling

semantically-aware positive and negative sample generation
for spatial tasks.

III. PRELIMINARIES

In this section, we introduce key notations and formally
define the urban region embedding problem. Consider a city
divided into N non-overlapping regions. We construct a graph
G = (V , E), where V is the set of region nodes, each
representing a unique urban area, and E is the set of edges
capturing inter-regional relationships. We assume the existence
of K distinct relation types (K > 1) between regions. The edge
set associated with the k-th relation is denoted by Ek, where
1 ≤ k ≤ K. For each relation, we define a corresponding
subgraph Gk = (V , Ek). These relational subgraphs are con-
structed based on human mobility patterns, POIs similarity,
and geographic adjacency.

Definition 1 (Human Mobility): Human mobility is defined
as a collection of trips between urban regions. Let t = (ro, rt)
represent a travel record, where ro and rt denote the origin and
destination regions respectively, with 1 ≤ o, t ≤ N. The set of
all trip records is denoted as T = {t1, t2, . . . , t|M|}, where M is
the total number of trips.

Definition 2 (POI Information): The functional character-
istics of each region are represented by its POIs. Let f be
the number of POI categories. We denote the POI matrix
as P = [p1, p2, . . . , pN] ∈ R f×N , where each column vector
pi ∈ R

f represents the POI distribution of region ri.
Definition 3 (Geographic Neighbors): Geographic neighbor

information encodes the spatial relationships between a region
and its adjacent regions. We denote the geographic neighbors
of each region as N = {N1,N2, . . . ,NN}, where Ni = {r j |

r jis adjacent to ri} represents the set of geographic neighbors
for region ri.

Problem Definition: Given the graph G, human mobility
data T , POI information P , and geographic neighbors N ,
our objective is to learn low-dimensional embeddings E =

{e1, e2, . . . , eN}, where each ei ∈ R
d denotes the d-dimensional

embedding of region ri ∈ V . These embeddings should
effectively preserve critical information derived from mobility
patterns, geographic relationships, and POI features. Such
representations are expected to benefit various downstream
urban computing tasks, including check-in prediction, land
usage classification, and crime prediction.

IV. METHODOLOGY

The overall architecture of EUPAS is illustrated in Fig. 2.
EUPAS is designed to improve the robustness, generalization,
and security of urban region embedding.

Workflow Overview. EUPAS follows a structured pipeline
to generate robust region embeddings. It begins with Region
Representation Learning, which uses a multi-relational graph
neural network to extract spatial-temporal features from urban
data (e.g., POIs, mobility, geography). The Perturbation
Augmentation module then introduces controlled adversarial
noise to improve robustness. Next, the Attentive Super-
vised Module assigns dynamic attention to different data
sources, emphasizing informative features and suppressing
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Fig. 2. The architecture of EUPAS integrates four key components: region representation learning, perturbation augmentation, attentive supervised module,
and adversarial contrastive learning.

TABLE I
LIST OF IMPORTANT NOTATIONS

noise. Finally, Adversarial Contrastive Learning enhances
representation discrimination via two strategies: the Deviation
Copy Generator (DevCopy) produces semantically aligned
but challenging positives, while the Trickster Generator gen-
erates structurally similar yet semantically distinct negatives.
The key notations used in EUPAS are summarized in Table I.

A. Region Representation Learning

GCNs offer a natural message-passing mechanism that
stabilizes representation learning over irregular and hetero-
geneous graph topologies. This property is especially useful
in urban settings, where each region engages in diverse and
sparse relational patterns (e.g., human mobility, geographic
proximity, and POI similarity).

We first learn the embedding representations of regions
under different relations. Let E (l)

k =
n
e(l)

1k, e
(l)
2k, . . . , e

(l)
Nk

o
denote

the region embeddings under the k-th relation at layer l, and
H(l)

Γ =
n
h(l)

0 , h
(l)
1 , · · · , h

(l)
K

o
represent relation embeddings. Given

initial node embeddings E (0)
k and relation embeddings H(0)

Γ ,
their updates at the l-th layer follow:

e(l)
uk = σ

0@X
γ∈Γ

X
v∈N γ

u

φu,γW(l)(e(l−1)
vk ◦ h(l−1)

k )

1A, (1)

h(l)
k = w(l)

k h(l−1)
k + b(l)

k , (2)

where u, v ∈ {1, 2, . . .,N} and k ∈ {0, 1, . . .,K}. σ(·) denotes
the LeakyReLU activation function, and ◦ represents the
element-wise product. N k

u is the set of neighbors of region
u under relation k, and φu,k = 1

|N k
u |

serves as a normalization
factor. W(l), w(l)

k , and b(l)
k are all learnable parameters. This

formulation allows the model to adaptively integrate structural
and semantic cues from heterogeneous relational views.

The element-wise interaction between e(l−1)
vk and h(l−1)

k pro-
vides an efficient and parameter-free mechanism to inject
relational semantics into node updates. While simple, it
preserves localized relational expressiveness and avoids over-
parameterization, making it well-suited for urban graphs with
sparse multi-relational structures (as verified in Section V-E).

To mitigate feature smoothing in GNNs, we adopt ResNet-
based [38] aggregation:

E (l+1)
k = E (l)

k + σ
�

D−
1
2 AD−

1
2 E (l)

k W(l)
�
, (3)

where A is the adjacency matrix and D is the diagonal degree
matrix.

To efficiently handle large-scale urban data, we store adja-
cency matrices Ak as sparse matrices, significantly reducing
memory consumption by retaining only non-zero elements.
Each region maintains only the top k-nearest neighbors based
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on similarity measures of human mobility, POIs, and geo-
graphic distances.

B. Perturbation Augmentation for Robustness and Security

Urban region data is often noisy and sparse, making
learned representations vulnerable to distortion, especially
under adversarial perturbations. To address this, we intro-
duce a perturbation-based augmentation that injects controlled
noise into region embeddings, enhancing both robustness and
generalization. Specifically, the region embeddings Ek for the
k-th relation are modified through a controlled perturbation
process:

X∗ = f
�
Ek + η∆θsp

�
, ∆θsp ∼ N (0,σ), (4)

where ∆θsp is a Gaussian noise perturbation with zero mean
and standard deviation σ. The scalar η controls the pertur-
bation intensity, while f (·) represents a dropout layer, which
further enhances robustness by randomly masking features
to prevent overfitting. The resulting perturbed embeddings,
X∗, ensure that the model remains robust even in dynamic,
uncertain urban environments.

C. Attentive Supervised Module

To integrate representations across multiple relations, we
introduce an attentive supervised module that assigns weights
to different relation types. This mechanism allows the model
to focus on the most informative relational signals, guided by
a supervised loss that improves embedding quality.

First, we define the semantic fusion coefficient αk for the
k-th relation as follows:

αk =
1
|N |

|N |X
j=1

q> · σ
�
We jk + b

�
, (5)

where q is the attention vector, and σ(·) represents the
LeakyReLU activation function. The parameters q, W, and b
are shared across all region embeddings, ensuring a consistent
projection into the same space for the computation of αk.

Then, using the learned coefficients αk, the final region
representation integrates all relations as:

E =

KX
k=1

softmax (αk) · E ′k · hk, (6)

where hk is the corresponding relation embedding, and E ′k
represents the region embeddings under the k-th relation after
applying a dropout layer to Ek. This aggregation ensures
that the representation is both comprehensive and focused on
significant relationships.

Inspired by [12], we design a unified loss function to
optimize the module, defined as:

Lasl =

NX
i=1

max
˚

ei − e+i




2 −



ei − e−i




2 , 0
	

+
X

(ri,r j)∈M

 
log

d̂o(r j | ri)
po(r j | ri)

+ log
d̂t(ri | r j)
pt(ri | r j)

!

+

NX
i=1

NX
j=1

�
S i j

p − (eip)>e jp
�2
, (7)

where e+i and e−i are the positive and negative geographic
neighbors of region ri, respectively. eip and e jp represent the
embeddings of regions ri and r j under the POI relation. Sp is
the POI similarity matrix from [9]. po(r j | ri) and pt(ri | r j)
are the original mobility distributions. d̂o(r j | ri) and d̂t(ri | r j)
are the reconstructed origin and target distributions, computed
as:

d̂o(r j | ri) =
exp(es

i
>et

j)P
j exp(es

i
>et

j)
, d̂t(ri | r j) =

exp(et
j
>es

i )P
i exp(et

i
>es

i )
. (8)

This loss function balances the supervised learning objectives
across multiple relationships, ensuring the embeddings capture
the most relevant features while maintaining consistency with
the observed data distributions.

D. Adversarial Contrastive Module

To overcome the intrinsic separability of region embed-
dings, which often limits contrastive learning effectiveness,
we propose two key modules: the Deviation Copy Gener-
ator (DevCopy) and the Trickster Generator (Trickster),
as shown in Fig. 3. These modules generate adversari-
ally enhanced positive and negative samples, encouraging
the model to learn more discriminative and robust region
representations.

1) Deviation Copy Generator: DevCopy addresses a central
challenge in contrastive learning: generating positive samples
that are both semantically consistent and sufficiently chal-
lenging. Common augmentation methods (e.g., masking or
cropping) often distort spatial semantics in urban contexts,
leading to unreliable embeddings. In contrast, DevCopy intro-
duces harder positives while preserving semantic integrity. It
achieves this through a two-stage adversarial process:

Directional Semantic Adjustment: A perturbation ψ is
applied to the original embedding E ′k to introduce controlled
deviation:

X̌ = E ′k − ψ
v
‖v‖2

, v = ∇E ′kL
+
cl . (9)

Here, L+
cl is the positive contrastive loss formally defined in

Eq. (14). v guides the perturbation direction along the gradient
of the contrastive loss, ensuring the modified sample remains
informative and semantically aligned.

Semantic Regularization via KL Divergence: To ensure
semantic consistency during adversarial perturbation, we con-
strain the perturbed embedding to yield similar semantic
predictions as the original under each relation. Specifically,
we define the semantic prediction distribution as:

LKL =

KX
k=1

DKL
�
P
�
Sk | X̌

�
‖ P
�
Sk | E ′k

��
. (10)

where P(Sk | ·) denotes the predicted semantic distribution
under the k-th relation. This encourages the perturbed embed-
ding to preserve semantic consistency with the original sample
while increasing its representational difficulty in feature space.
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Fig. 3. Workflow diagram for the deviation copy and trickster generators.

Final Positive Sample Refinement: After semantic regu-
larization, the refined hard positive sample X+

∗ is obtained by
applying an additional adversarial perturbation:

X+
∗ = X̌ − ψ ω

‖ω‖2
, ω = ∇X̌LKL. (11)

This two-stage optimization produces hard positives that
preserve semantic meaning while increasing the model’s sensi-
tivity to fine-grained variations in urban region representations.

2) Trickster Generator: The Trickster Generator aims to
create hard negative samples that are close in structure yet
semantically divergent from the anchor. Traditional contrastive
learning often relies on randomly selected or weakly per-
turbed negatives, which limits representation discriminability.
To address this, we design a gradient-guided adversarial pro-
cess that generates informative negatives while maintaining
structural proximity.

Adversarial Hard Negative Generation: Given the clean
region embedding E ′k, we generate a hard negative by intro-
ducing a small perturbation δ constrained under ‖δ‖2 ≤ ε. The
objective is to minimize semantic consistency, defined by the
prediction distribution P(Sk | ·):

Lneg = −

KX
k=1

log P
�
Sk | E ′k + δ

�
(12)

Gradient-Based Perturbation: We instantiate δ using nor-
malized gradient ascent:

X −∗ = E ′k + ε
g
‖g‖2

, g = ∇E ′kLneg (13)

This perturbation maximizes semantic discrepancy while pre-
serving structural coherence, enabling the model to learn more
robust and discriminative region boundary.

3) Integration and Task Relevance: To ensure effectiveness
in downstream tasks, we apply separate linear projections to
X+
∗ and X −∗ to align them with specific urban forecasting

objectives, as inspired by [39]. These modules significantly
enhance embedding robustness in applications such as traffic
forecasting, where fine-grained spatial distinctions are critical
for accurate predictions.

Algorithm Analysis. The computational complexity of
the Deviation Copy Generator and Trickster Generator is
as follows. For the Deviation Copy Generator, two gradient
computations are required: v = ∇E ′kLcl+ and ω = ∇X̌LKL, each

Algorithm 1 Deviation Copy Generator (DevCopy)
Input: Anchor embedding E ′k, contrastive loss Lcl+ , perturba-

tion step size ψ.
Output: Hard positive sample X+

∗ .
Stage 1: Initial Perturbation
Compute gradient of contrastive loss:

v = ∇E ′kLcl+

Apply perturbation to the anchor embedding:

X̌ = E ′k − ψ
v
‖v‖2

Stage 2: Semantic Refinement
Minimize KL divergence between X̌ and E ′k:

LKL =

KX
k=1

DKL
�
P
�
Sk | X̌

�
‖P
�
Sk | E ′k

��
Compute gradient of KL loss:

ω = ∇X̌LKL

Refine the positive sample:

X+
∗ = X̌ − ψ ω

‖ω‖2

return X+
∗

with complexity O(d), where d is the embedding dimension.
Additionally, computing the KL divergence across K relations
incurs O(Kd), leading to a total per-sample complexity of
O(Kd). For the Trickster Generator, the gradient computation
∇E ′kLneg and normalization together cost O(d). When both
modules are applied to N samples, the overall complexities
become O(NKd) and O(Nd) for the Deviation Copy and
Trickster modules, respectively. The dominant term depends
on the number of relations K and embedding dimension d, with
the DevCopy module being more computationally intensive as
K increases.

4) Contrastive Optimization for Robust Augmentation:
To enhance the robustness and generalizability of contrastive
learning in noisy urban environments, we design a dual-
objective InfoNCE-based loss [40], which separately models
positive and negative contrastive signals. The goal is to
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Algorithm 2 Trickster Generator
Input: Clean region embedding E ′k, semantic similarity matrix

Sk, perturbation budget ε.
Output: Adversarial hard negative sample X −∗ .

Compute adversarial loss to minimize semantic
consistency:

Lneg = −

KX
k=1

log P
�
Sk | E ′k + δ

�
Compute gradient of the loss with respect to E ′k:

g = ∇E ′kLneg

Generate adversarial hard negative sample via normalized
gradient ascent:

X −∗ = E ′k + ε ·
g
‖g‖2

return X −∗

maximize the agreement between anchor embeddings and their
corresponding DevCopy samples, while minimizing similarity
with adversarially crafted Trickster negatives.

The positive contrastive loss is defined as:

Lcl+ = −

KX
k=1

log
ϕ
�
E ′k,X+

∗

�P
e′x∈Z′

ϕ
�
E ′k, e′x

� , (14)

where ϕ(·) = exp(cosine(·)/τ) is a temperature-scaled cosine
similarity, and Z′ = Z ∪

˚
X −∗
	

denotes the extended negative
sample pool.

Similarly, the negative contrastive loss is formulated as:

Lcl− = −

KX
k=1

log
ϕ
�
E ′k,X∗

�P
e′x∈Z′

ϕ
�
E ′k, e′x

� , (15)

where X∗ is perturbation-augmented node embedding. We use
different positive samples in the contrastive loss formulation
to avoid overfitting to a single type of positive example. This
strategy not only enhances the model’s ability to distinguish
between positive and negative samples but also encourages
it to learn more nuanced representations that capture diverse
positive semantic relationships. By ensuring that the model is
exposed to multiple forms of positive signals, we promote a
more generalizable learning process.

As a result, this approach increases the model’s robustness
to the inherent noise and heterogeneity of urban data, ensuring
that it can handle a variety of urban contexts more effectively.
This is especially important in noisy, real-world urban envi-
ronments where data from multiple sources often interact in
complex and unpredictable ways.

To balance the influence of positive and negative signals,
we define the adversarial contrastive loss as:

Lacl = αLcl− + (1 − α)Lcl+ , (16)

where α ∈ [0, 1] is a tunable hyperparameter that controls
the relative emphasis on repulsive (negative) versus attractive
(positive) forces.

TABLE II
DATA DESCRIPTION OF EXPERIMENTED DATASETS

E. Joint Optimization

We integrate the adversarial contrastive loss Lacl with the
attentive supervised learning objective Lasl to jointly opti-
mize semantic fidelity and structural robustness. To prevent
overfitting and promote generalization, we further apply `2
regularization to all learnable parameters Θ. The full objective
is expressed as:

Ltotal = βLasl + (1 − β)Lacl + µ‖Θ‖2, (17)

where β ∈ [0, 1] governs the trade-off between supervised and
self-supervised components, and µ denotes the regularization
coefficient.

V. EXPERIMENTS

In this section, we present an extensive set of experiments
designed to evaluate the effectiveness, security, and reliability
of the proposed model.

A. Datasets

We evaluate our framework on three tasks: crime prediction,
land usage classification, and check-in prediction using urban
datasets from New York City (NYC) and Chicago. Regions are
defined based on census block boundaries and street-level data,
following [1], [4], and [9]. Specifically, NYC is divided into
180 regions and Chicago into 234.1 Human mobility data is
derived from NYC yellow taxi records2 and Chicago trip data,3

capturing approximately 10 million and 2.4 million trips per
month, respectively. POI and check-in data is collected via
the Foursquare API,4 comprising about 20,000 POI records for
NYC and 112,000 for Chicago. Each record includes the venue
name, category, check-in count, and visitor statistics, used to
characterize regional functions. Crime data is sourced from
the NYC Open Data and Chicago Data Portal, providing over
40,000 and 32,000 annual crime records, respectively. Each
entry includes the time, location, and type of offense.

To avoid temporal leakage in time series tasks (check-in and
crime prediction), we use a chronological data split: the first
42 weeks (80%) as training and the final 10 weeks (20%) for
testing. This mirrors real-world forecasting scenarios where
models are trained on past data to predict future events. A
summary of dataset statistics is shown in Table II.

1http://www.census.gov
2https://opendata.cityofnewyork.us/
3https://data.cityofchicago.org/
4https://location.foursquare.com/developer/
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B. Experimental Settings

EUPAS is implemented in PyTorch. All experiments are
conducted on an Intel(R) Xeon(R) E5-2680 v4 CPU with an
NVIDIA GeForce RTX 3090 Ti-24G GPU. The dimension of
our model is 144. The model is optimized using the Adam
optimizer with a learning rate of 0.001. The heterogeneous
GCNs component contain 3 layers. Key hyperparameters are
set as follows: standard deviation σ = 0.01, scale factor η = 1,
perturbation threshold ε = 1, and weighting factors α = 0.50,
β = 0.15, and temperature τ = 4.

All hyperparameters are selected via grid search on the
validation set of the Manhattan dataset. The final selected
values are then applied to both Manhattan and Chicago without
further tuning to evaluate generalization across cities. For
instance, τ is searched from {2, 4, 6}, while α and β are
selected from [0.1, 0.9] in increments of 0.1. We observe that
EUPAS maintains stable performance across a wide range of
hyperparameter settings, suggesting that the model does not
heavily rely on fine-tuning. For fair comparison, all baseline
models are tuned according to their original configurations or
publicly recommended settings.

C. Baselines and Evaluation Metrics

We compare EUPAS with four categories of baseline meth-
ods:

1) Shallow Embedding Methods:
• LINE [41]: Captures first- and second-order proximities

via edge-wise loss.
• node2vec [42]: Learns embeddings using biased random

walks and the Skip-Gram model.
• GAE [43]: Encodes nodes via a graph autoencoder opti-

mized for reconstruction.
2) Graph Neural Network (GNN) Methods:
• GCN [44]: Aggregates neighborhood features through

spectral convolutions.
• GraphSAGE [45]: Learns inductive embeddings via sam-

pled neighborhood aggregation.
• GAT [24]: Applies attention weights to neighboring

nodes during message passing.
3) Multi-View and Spatial Graph Models:
• POI [9]: Generates region vectors based on POI-TFIDF

spatial semantics.
• HDGE [4]: Integrates mobility paths and spatial relations

through hybrid graphs.
• ZE-Mob [6]: Utilizes region co-occurrence in mobility

trips for embedding.
• MV-PN [7]: Builds multi-view POI graphs for regional

representation.
• CGAL [8]: Combines POI and mobility views using

adversarial graph alignment.
• MVGRE [9]: Employs cross-view attention for mobility

and POI integration.
• MGFN [10]: Fuses multi-mobility graphs using a multi-

level attention module.
4) State-of-the-Art Urban Embedding Approaches:
• ROMER [11]: Captures multi-view global dependencies

via graph attention and staged fusion.

• HREP [12]: Adopts prefix-tuning to guide region embed-
dings in downstream urban tasks.

Evaluation Metrics: For predictive tasks (crime and check-
in), we adopt Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R2. For clustering (land usage), we
report Normalized Mutual Information (NMI) and Adjusted
Rand Index (ARI).

D. Main Results

1) Check-In and Crime Prediction: The check-in and crime
prediction tasks aim to evaluate how well the learned region
embeddings capture spatiotemporal dynamics and semantic
information useful for forecasting future regional activity.
Specifically, the goal is to predict the number of check-in
events (e.g., at restaurants, shops) or the number of reported
crimes in each region over the course of one year using the
learned region embeddings.

We evaluate the predictive effectiveness of region embed-
dings on weekly check-in and crime counts across Manhattan
and Chicago. Each city’s dataset spans 52 weeks with weekly
granularity, forming 52 time steps per region. Following
a chronological split, the first 42 weeks (80%) are used
for training and the remaining 10 weeks (20%) for testing,
yielding 7,560 training and 1,800 testing samples per task per
city.

Table III reports the results. In Manhattan, EUPAS achieves
notable improvements over the strongest baseline (HREP) on
check-in prediction: 6.9% (MAE), 2.9% (RMSE), and 2.7%
(R2). On crime prediction, the gains are even larger: 10.8%
(MAE), 8.5% (RMSE), and 7.4% (R2). Similar performance
improvements are observed in Chicago, confirming the gen-
eralizability of EUPAS across cities with distinct spatial and
socio-economic structures.

Classical methods such as LINE, node2vec, and GAE
underperform due to their limited capacity to model complex
spatial dependencies and vulnerability to noise. Multi-view
approaches (HDGE, ZE-Mob, MV-PN) improve expressive-
ness but remain sensitive to sparsity and perturbation.
Advanced graph-based models (MVGRE, MGFN, ROMER,
HREP) incorporate attention and fusion mechanisms, yet still
struggle under incomplete or noisy data.

EUPAS surpasses these baselines by jointly modeling
semantic-preserving perturbations and adversarial contrastive
signals. Its deviation-based augmentation and trickster-driven
hard negative generation enhance the robustness of region
embeddings. The consistent performance across both cities
underscores EUPAS’s resilience and scalability in real-world
urban analytics.

2) Land Usage Classification: To evaluate the semantic
quality of region embeddings, we perform land usage classi-
fication via unsupervised clustering. Land usage classification
helps assess how well the learned embeddings represent func-
tional and spatial aspects of urban regions, which is crucial
for urban region profiling tasks. We apply K-means clustering
to the learned embeddings, with the number of clusters set
to k = 12 for both Manhattan and Chicago, corresponding
to real-world zoning systems (12 Community Board zones in
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TABLE III
PERFORMANCE COMPARISON ON URBAN PREDICTION TASKS. BOLD INDICATES THE BEST PERFORMANCE,

UNDERLINE INDICATES THE SECOND-BEST

Fig. 4. Comparison of Manhattan districts and region clusters obtained under different baseline methods.

Manhattan and functional land use categories in Chicago, as
defined by the Chicago Metropolitan Planning Agency, e.g.,
residential, commercial, industrial).

As shown in Table III, EUPAS consistently outperforms
all baselines. In Manhattan, it improves over ROMER by
4.9% (NMI) and 5.6% (ARI), indicating superior semantic
alignment. In the more heterogeneous Chicago dataset, EUPAS
achieves even greater improvements-12.2% (NMI) and 10.7%
(ARI), demonstrating its strong ability to generalize to more
complex, less structured urban layouts. Models such as ZE-
Mob and MVGRE struggle with ambiguous or mixed-use
regions, leading to unclear cluster boundaries. In contrast,
EUPAS benefits from perturbation-aware contrastive learning
and high-level semantic guidance, which enable it to generate
more coherent region embeddings that better align with real
land use categories.

Fig. 4 provides a visual comparison of clustering results in
Manhattan. Regions within the same cluster are colored identi-
cally, and EUPAS demonstrates significantly higher alignment
with real land use boundaries, showcasing its ability to capture

both functional and spatial semantics despite data noise or
sparsity.

E. Ablation Study

We conduct ablation experiments on all three downstream
tasks to evaluate the contribution of key components in
EUPAS. The following variants are considered:

w/o Spatial Augmentation: Replaces the spatial pertur-
bation mechanism with standard augmentation to generate
positive samples.

w/o Supervised: Removes the attentive supervised module.
w/o Self-Supervised: Removes the adversarial contrastive

module.
w/o Trickster: Excludes the adversarially generated hard

negatives X −∗ .
w/o DevCopy: Excludes the adversarially generated hard

positives X+
∗ .

As shown in Fig. 5, each module contributes meaningfully
to the overall performance. Removing spatial perturbation
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Fig. 5. Ablation studies for three tasks on NYC dataset.

TABLE IV

PERFORMANCE OF DIFFERENT INTERACTION FUNCTIONS

notably degrades accuracy, indicating the importance of struc-
tured augmentation in capturing urban spatial semantics. The
absence of the self-supervised module causes the most severe
drop, underscoring its critical role in improving robustness
against noisy and incomplete data.

Furthermore, eliminating either the Trickster or DevCopy
module leads to noticeable performance declines, demonstrat-
ing the effectiveness of generating hard negatives and hard
positives for enhancing representation discrimination. Mean-
while, excluding the supervised module results in unstable
clustering and reduced predictive accuracy, highlighting the
necessity of hybrid supervision.

Interaction Mechanism. To investigate the effectiveness of
the element-wise product used to model interactions between
node and relation embeddings (Eq. (1)), we compare it against
two alternatives:

• Concatenation: [e(l−1)
vk ; h(l−1)

k ] followed by a linear layer.
• Bilinear Pooling: e>vkWbhk as a learnable bilinear

interaction.

As shown in Table IV, although the Hadamard product
slightly lags behind Bilinear in terms of inference time, it
outperforms both alternatives in terms of check-in prediction
accuracy (MAE) and robustness under adversarial attacks

(PGD). Given its superior accuracy and effectiveness in large-
scale urban modeling, we conclude that the Hadamard product
is the optimal choice despite the minor trade-off in inference
time.

F. Hyperparameter Sensitivity

We evaluate the sensitivity of EUPAS to key hyperparam-
eters by varying one parameter at a time while fixing others
to their default settings in the NYC dataset. The results are
presented in Fig. 6, covering three critical hyperparameters:
the temperature τ, contrastive weight α, and the balancing
coefficient β.

Effect of τ. This parameter controls the sharpness of
similarity distributions in the contrastive loss (Equations 14,
15). We vary τ across {0.1, 0.5, 1, 2, 3, 4, 5, 6} and observe
that smaller values (≤ 3) tend to destabilize training by
overemphasizing hard negatives in the similarity distribution.
Conversely, large values (>4) overly smooth the similarity
space, reducing discrimination power. The optimal setting,
τ = 4, provides a good balance between gradient sharpness
and embedding robustness.

Effect of α. This coefficient weights the contribu-
tions of positive and negative sample losses in adversarial
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Fig. 6. Impact of τ, α and β to our model.

contrastive learning (Equation 16). We test values from
{0.5, 0.6, 0.7, 0.8, 0.9, 0.95} and find that α = 0.5 performs
best, suggesting that equal emphasis on positive and negative
examples leads to more stable optimization and improved
contrastive discrimination.

Effect of β. This parameter controls the contribution of the
self-supervised loss in the total objective (Equation 17). We
explore β ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} and observe that
β = 0.15 offers optimal performance. This reflects the com-
plementary nature of supervised and self-supervised learning
in our framework, with supervised learning contributing more
strongly in noisy, real-world settings.

G. Adversarial Robustness Evaluation

We comprehensively evaluate the robustness of the pro-
posed EUPAS model under both natural noise and adversarial
perturbations. The evaluation consists of three perspectives:
resilience to random noise, robustness against white-box
adversarial attacks, and generalization under black-box trans-
fer attacks.

1) Robustness to Realistic Data Noise: To simulate natural
disturbances in urban sensing data (e.g., mobility counts,
sensor fluctuations), we inject Poisson noise [46] into different
portions of the input. Poisson noise is particularly suited for
count-based or discrete event modeling, common in traffic
and check-in datasets. Specifically, we perturb 10%, 30%, and
90% of the input embeddings using Poisson-distributed values
(mean noise level =1). As visualized in Fig. 7, EUPAS con-
sistently outperforms all baselines across noise levels. While
performance naturally degrades as noise intensity increases,

Fig. 7. Performance changes as the training data qualities decrease.

TABLE V

WHITE-BOX PGD ATTACK RESULTS FOR EUPAS AND HREP MODELS

EUPAS shows significantly higher tolerance than alternatives,
especially in downstream prediction tasks.

2) Resistance to White-Box Adversarial Attacks: In this
experiment, we assess the vulnerability of both EUPAS and
HREP models under a white-box attack scenario using PGD,
a widely used gradient-based adversarial attack method. PGD
iteratively optimizes the adversarial perturbations based on
the model’s gradients, making it effective in evaluating the
robustness of deep learning models. The attack parameters
are configured with a maximum perturbation of λ = 0.03, a
step size of α = 0.01, and 20 iterations, applying an `2 norm
constraint. The evaluation is conducted both on the original
data and the adversarial samples generated by PGD.

Table V presents the results of the PGD attack on both
models, showing the performance degradation for each model
under adversarial perturbation. The results indicate that while
both models experience a decrease in performance under PGD,
EUPAS maintains a higher level of robustness with lower
MAE and RMSE values compared to HREP. This demon-
strates that adversarial contrastive learning, the core technique
in EUPAS, effectively enhances the model’s resilience against
adversarial attacks, consistently outperforming the strongest
baseline model.

3) Robustness Under Transfer-Based Black-Box Attacks:
To further evaluate the robustness of HREP and EUPAS under
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TABLE VI

PERFORMANCE OF EUPAS AND HREP MODELS AGAINST BLACK-BOX ATTACKS ON THE NYC DATASET. EACH COLUMN DENOTES THE ATTACK
STRENGTH WITH λ = 0.02 AND λ = 0.1. WE GENERATE PGD ATTACK EXAMPLES (PGD) AND EXPECTATION OF TRANSFORMATION ATTACK

(EOT) FROM EUPAS AND HREP MODELS. EACH ROW SHOWS THE PERFORMANCE OF THE TARGET MODEL TRAINED WITH `2

Fig. 8. Spatial perturbation strength heatmaps in Manhattan derived from embeddings generated using different input data sources.

realistic attack scenarios, we conduct transfer-based black-
box attacks on the NYC dataset. In this setting, adversarial
examples are crafted using a source model and then transferred
to a target model for evaluation, simulating cases where the
attacker has no access to the internal parameters of the victim
model. We also generate black-box adversarial examples with
EUPAS by attacking the EUPAS with a linear layer using the
PGD attack (EUPAS (PGD)), and the EUPAS with a projector
using the instance-wise attack (EUPAS (EoT)).

As shown in Table VI, EUPAS consistently generates
stronger black-box attacks compared to HREP and ROMER.
When EUPAS is used as the source model, it significantly
degrades the performance of all target models. For example,
under the EoT attack with λ = 0.10, the MAE of HREP
increases from 67.69 to 88.91 in crime prediction, and the
NMI of ROMER drops from 0.80 to 0.67 in land usage
classification. These large margins indicate high transferability
of adversarial examples from EUPAS. In contrast, attacks
transferred from HREP and ROMER are relatively weaker.
Across both tasks, adversarial examples generated from HREP

Fig. 9. Statistical analysis of perturbation strengths derived from different
semantic sources.

result in smaller MAE increases and less NMI degradation on
EUPAS. This asymmetry highlights EUPAS’s dual advantage:
it is more effective as an attacker and more robust as a
defender. These results validate that EUPAS not only benefits
from stronger adversarial representation learning, but also acts
as a more potent adversarial generator, affirming its utility in
real-world threat scenarios where transferability is critical.
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Fig. 10. t-SNE visualizations of anchors, positives, and adversarial negatives with different embedding sources across stages of training.

Fig. 11. UMAP visualizations of anchors, positives, and adversarial negatives with different embedding sources across stages of training.

H. Regional Interpretability of Adversarial Perturbations

To provide spatial interpretability and better understand the
mechanism behind adversarial perturbations, we conduct a
region-level analysis of perturbation strengths across Manhat-
tan using embeddings derived from three semantic sources:
Human Mobility, Geographic Neighbors, and POI Information.
As visualized in Fig. 8, the spatial heatmaps reveal distinct
perturbation patterns under different inputs. Human Mobility
and POI-based embeddings show concentrated perturbations in
high-activity areas such as Midtown and Downtown, reflect-
ing their greater semantic complexity and susceptibility to
adversarial disruption. In contrast, the Geographic Neighbor-
based map displays a more uniform distribution, suggesting
less regional sensitivity under this relation.

To quantify these differences, Fig. 9a provides a boxplot of
perturbation magnitudes (`2 distance). POI embeddings exhibit
higher variability and a larger median perturbation, indicating
greater adversarial vulnerability. This pattern is further con-
firmed by the density distribution in Fig. 9b, where POI-based
embeddings show a longer tail and heavier skew, revealing a
higher frequency of extreme perturbations in specific urban
regions.

I. Contrastive Embedding Evolution With DevCopy and
Trickster

To better understand the role of the proposed DevCopy and
Trickster modules, we qualitatively visualize how they shape
the contrastive embedding space. While our methodology con-
ceptually distinguishes DevCopy as generating semantically
aligned hard positives and Trickster as producing semantically
divergent but locally proximate negatives, these effects are

further validated through empirical visualization in Fig. 10
and Fig. 11.

We use both t-SNE and UMAP to track the evolution
of anchor, positive, and adversarial negative embeddings at
different training stages (initial, mid, final). t-SNE excels at
preserving local structures and revealing data clusters, while
UMAP better captures both local and global structures, main-
taining the overall data geometry and large-scale relationships.
In early training, all samples are loosely distributed with
little semantic structure. As training progresses, DevCopy
samples move closer to anchor clusters, enhancing intra-class
compactness. Meanwhile, Trickster samples remain nearby in
Euclidean space but form distinct manifolds, reflecting their
role as hard negatives that challenge semantic consistency.

These dynamics confirm the intended behavior: DevCopy
helps the model learn to tolerate local variations without losing
semantic alignment, while Trickster introduces adversarially
misleading yet spatially close samples to improve contrastive
discrimination. By the final stage, embeddings form well-
separated, semantically meaningful clusters, demonstrating
that our generators not only provide hard samples but also
induce a more structured and interpretable feature space.

J. Computational Efficiency

To comprehensively evaluate the computational efficiency
of the EUPAS model, we conducted ablation experiments
on two city datasets of different scales: NYC and Chicago.
The training and inference time comparisons are reported in
Table VII. The results show that EUPAS exhibits a clear
advantage in training time over previous methods, particularly
considering the complexity of the model, while maintaining
high efficiency.
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TABLE VII

COMPARISON OF TRAINING TIME & INFERENCE TIME

To the best of our knowledge, we are the first to incorporate
security concerns in the field of urban area analysis. The
Trickster Generator and Deviation Copy modules we propose,
while adding some overhead to inference time, are specifically
designed to enhance predictive accuracy while addressing
security-related challenges. This trade-off allows EUPAS to
not only surpass traditional methods in accuracy but also make
a significant contribution to ensuring data privacy and security.

VI. CONCLUSION

In this paper, we propose EUPAS, a robust and efficient
framework for urban region representation learning, addressing
critical challenges such as noise, data incompleteness, and
semantic biases, which are central concerns in the field of
secure and trustworthy data-driven modeling. Our framework
combines a joint attentive supervised and adversarial con-
trastive learning approach, which ensures reliable and resilient
performance in urban tasks like check-in prediction, crime
prediction, and land usage classification. By introducing inno-
vative components such as perturbation augmentation and
adversarial contrastive modules, EUPAS effectively mitigates
the negative impact of noise and data incompleteness, pro-
viding a more robust solution for urban data analysis. Our
experiments on two structurally distinct cities, Manhattan and
Chicago, demonstrate that EUPAS generalizes well across
different urban environments. The model maintains high per-
formance in all tasks despite variations in city morphology
and data distribution, confirming its potential for broader
deployment in smart city applications.

Looking forward, we aim to extend EUPAS’s capabilities
further by focusing on enhancing its security features. Specif-
ically, we plan to incorporate stronger adversarial defenses to
better withstand sophisticated attacks and explore the integra-
tion of differential privacy techniques to safeguard sensitive
urban data.
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