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Reputation-Driven Asynchronous Federated
Learning for Enhanced Trajectory

Prediction With Blockchain
Weiliang Chen , Li Jia, Yang Zhou , and Qianqian Ren

Abstract—Federated learning (FL), when integrated with
blockchain, facilitates secure data sharing in autonomous driving
applications. As vehicle-generated data becomes more granular
and complex, the absence of data quality audits raises con-
cerns about multiparty mistrust in trajectory prediction tasks.
However, most of the existing research on trajectory prediction
focuses on how to improve the model to enhance the prediction
accuracy, and lacks the consideration of the privacy and security
issues of data sharing in real-world scenarios. To address this, we
propose an asynchronous FL data-sharing method, incorporating
an interpretable reputation quantization mechanism based on
graph convolutional networks. Data providers share data struc-
tures under differential privacy constraints, ensuring security
while minimizing redundancy. We utilize deep reinforcement
learning to classify vehicles by reputation level, optimizing
FL aggregation efficiency. Experimental results show that the
proposed scheme not only strengthens the security of trajectory
prediction but also improves prediction accuracy.

Index Terms—Asynchronous federated learning (AFL), data
sharing, deep reinforcement learning (DRL), differential privacy
(DP), graph convolutional network, trajectory prediction.

I. INTRODUCTION

THE RAPID advancements in computational and commu-
nication technologies, particularly within the 5G network,

have revolutionized modern vehicular services and appli-
cations, significantly enhancing the driving experience [1].
Autonomous vehicles are complex systems that integrate
various technologies, including perception algorithms [2], path
planning [3], control theory [4], and positioning [5]. Among
the key research areas, trajectory prediction [6] is pivotal to the
decision-making processes of intelligent vehicles. A precise
and reliable trajectory prediction algorithm can anticipate
potential traffic accidents, thereby enhancing overall vehicular
safety through timely preventive measures.
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Trajectory prediction for autonomous vehicles is predom-
inantly driven by neural network approaches, with recurrent
neural networks (RNNs) at the forefront. Researchers have
developed numerous models based on historical trajectory
data and environmental information. For example, GRIP [7]
enhances convolutional layers with graph operations, modeling
driving scenarios as graphs where vehicle interactions are
depicted as node interrelationships. Another method [8]
introduces a novel framework leveraging spectral clustering,
enabling the simultaneous prediction of vehicle trajectories
and driving behaviors. Despite these promising advances,
trajectory prediction faces significant real-world challenges,
particularly in traditional telematics environments where data
silos persist. This challenge underscores the need for inno-
vative solutions, with federated learning (FL) emerging as a
promising approach.

FL offers a robust strategy for preserving data privacy
in distributed environments [9]. It enables edge intelligence
by leveraging knowledge from decentralized data sources
while maintaining strict privacy standards. When combined
with the inherent features of blockchain technology [10], FL
provides a solid foundation for efficient and reliable data
sharing among participants. Even in low-trust environments,
model parameters are transmitted to a central server for
aggregation, facilitating parallel learning to improve the global
model while ensuring data integrity, maintaining anonymity,
and enabling traceability. However, as autonomous driving
technology advances and vehicle-generated data becomes
more complex, trajectory prediction still faces several critical
challenges.

1) Limited Trust Among Multiple Parties: Current data-
sharing schemes with central administrators increase
the risk of data leakage. Administrators must manage
large volumes of aggregated data from various sources,
including unverified or raw data.

2) Uncertain Data Quality From Participants: Due to
vehicle mobility and unreliable communications, the
data-sharing environment is highly dynamic, with new
unverified data constantly being generated. Malicious
data shared by providers can significantly bias the
prediction process.

3) Significant Prediction Delays: In the context of
dynamic vehicle data updates, it is crucial to address
aggregation challenges caused by delays in het-
erogeneous vehicle data. Conventional approaches

2327-4662 c© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas Tech University. Downloaded on April 29,2025 at 06:12:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1978-7504
https://orcid.org/0000-0002-2582-9494
https://orcid.org/0000-0003-1171-7018


7406 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 6, 15 MARCH 2025

relying on FL with blockchain technology require
coordination among roadside units (RSUs) at each
timestamp before uniformly uploading data for global
aggregation.

To systematically address these limitations, we propose a
novel trajectory prediction approach, reputation-driven asyn-
chronous federated learning for enhanced trajectory prediction
with blockchain (RAFT), built on a graph convolution network
(GCN). RAFT incorporates an asynchronous FL (AFL) strat-
egy that evaluates vehicle reputation through their interactions.
Data providers share data structures under differential pri-
vacy (DP) constraints [11], ensuring data security. Given
the effectiveness of deep reinforcement learning (DRL) in
managing dynamic decision-making tasks, many studies have
applied DRL to enhance FL performance. For example, deep
Q-learning networks (DQNs) have been combined with FL
to address edge computing challenges, such as task offload-
ing [12], caching, and communication issues [13]. Similarly,
deep deterministic policy gradient (DDPG) has been used to
select high-quality device nodes for better model aggregation
and lower communication costs [14], [15], [16]. In contrast,
proximal policy optimization (PPO) has proven effective in
optimizing task scheduling strategies [17]. While both DQN
and PPO are suitable for discrete action spaces, the stability
and efficiency of PPO make it the ideal choice for grouping
vehicles in RAFT, reducing FL costs [18]. The contributions
of this article are as follows.

1) We propose an interpretable reputation-based frame-
work for secure data sharing in trajectory prediction.
Our framework includes a reputation reward mech-
anism that replaces traditional loss functions with
reputation values derived from vehicle trajectory
data, fostering cooperation among method components
and enabling FL to develop more effective global
models.

2) We introduce a reputation-driven AFL scheme tailored
for dynamic and heterogeneous vehicle networks. This
scheme features a reputation-enhanced PPO algorithm
that groups vehicle trajectory models based on reputa-
tion values to reduce FL costs. High-reputation vehicle
clusters, which exhibit high data quality and similar
trajectory graph models, are prioritized for global FL
aggregation.

3) We implement DP techniques to protect the privacy and
security of shared trajectory graph models and vehicle
reputation values while preserving graph structures and
vehicle interactions.

4) Extensive experiments on large-scale vehicle trajectory
datasets, including NGSIM and ApolloScape, across
various real-world scenarios, validate our approach.
Results show that our data-sharing scheme effectively
ensures data security, improves trajectory prediction
accuracy, and adapts well to diverse traffic scenarios.
Comprehensive ablation studies further confirm the
effectiveness of our method components.

The remainder of this article is organized as follows.
Section II presents related work. Section III introduces the
data-sharing framework and system workflow. Sections IV and

V delve into the details of our proposed model, explaining the
methodology and approach. Section VI presents a comprehen-
sive evaluation through extensive experiments, demonstrating
the effectiveness of our method. Finally, Section VII concludes
this article, summarizing our findings and future directions.

II. RELATED WORK

Trajectory prediction spans multiple domains, including
statistics [19], signal processing [20], and control systems
engineering [4]. Given the nonstationary nature of vehicle
trajectories, RNN-based methods have become prevalent.
CS-LSTM [21] identifies maneuvers of surrounding vehicles
on highways and predicts their trajectories using a convolu-
tional social pooling layer to capture interactions. TraPHic
[22] utilizes a novel LSTM-CNN hybrid network to model
interactions among various traffic agents. Subsequently, graph-
based models, which represent vehicles as nodes to study
spatiotemporal interactions, have gained significant attention
for their ability to simulate traffic scenarios effectively [7].
Spectral [8] captures temporal correlations across modeling the
whole traffic environment but suffers from high computational
costs and sparse adjacency matrices that reduce accuracy.
To better adapt to dynamic traffic environments, GRIP++
[23] utilizes both fixed and dynamic graphs to capture the
complex interactions among different types of traffic agents,
thereby improving trajectory prediction accuracy. However,
the aforementioned trajectory prediction methods overlook
the issue of data privacy in real-world traffic scenarios. Our
proposed RAFT framework addresses this by considering
the dynamic traffic environment. Based on a dynamic GCN
trajectory prediction model, RAFT leverages a distributed
and secure data-sharing framework, combining AFL with
blockchain technology to mitigate privacy leakage during
vehicle data sharing.

FL [24] provides privacy-preserving edge intelligence in
distributed scenarios, allowing users to retain their data locally
while sharing model parameters with a central server for
federated global model learning. This makes it a popular solu-
tion for addressing data silos and has been applied in fields,
such as speech recognition, image processing, healthcare, and
Internet of Vehicles (IoV) [9]. However, traditional FL relies
on a centralized server to aggregate parameters from numerous
distributed clients, which can lead to a single point of failure.
The decentralized and traceable nature of blockchain makes
it a vital complement to FL. Warnat-Herresthal et al. [25]
integrated edge computing, blockchain, and FL to propose a
decentralized training model, enabling all participants to merge
parameters with equal rights while maintaining privacy. To
further accommodate the complex and flexible on-chain envi-
ronment, DRL [26] has emerged as a technology well suited to
edge computing [27], offering end-to-end learning capabilities
for decision making and understanding across environments.
Lu et al. [16] proposed an algorithm combining DDPG and FL
through smart contracts, improving node selection in IoV and
enhancing data-sharing security among vehicles. However, in
dynamic trajectory prediction scenarios, existing blockchain-
based FL frameworks are suboptimal for fairly selecting
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vehicle nodes, as they lack appropriate evaluation metrics
and are vulnerable to malicious node interference. Therefore,
we propose an interpretable reputation mechanism enhanced
data-sharing framework, where reputation values derived from
vehicle trajectory data replace traditional loss functions to
improve vehicle node selection. A reputation-based grouping
PPO algorithm is also presented to optimize global model
aggregation.

Data sharing [28] is crucial for improving driving experi-
ences and Internet of Things (IoT) services, with data quality
largely dependent on vehicle reputation [29]. As blockchain-
based FL frameworks evolve, integrating reputation-based
mechanisms to tackle reliability issues like sensor defects,
firmware malfunctions, or selfish behavior has become a
promising solution [30]. Centralized trust systems, which
rely on quick decision making and a central server, often
struggle to meet stringent quality of service requirements. In
contrast, decentralized trust systems, where vehicles or RSUs
manage trust locally, reduce the need for interaction with
network infrastructure. Huang et al. [31] improved reputation
updates in distributed vehicular edge computing by employing
multiweight subjective logic. Kang et al. [32] proposed a
three-weight subjective logic model for more accurate repu-
tation management in blockchain-based vehicular networks to
address challenges posed by varying vehicle capabilities and
dynamic network conditions. However, integrating the repu-
tation evaluation system into the entire trajectory prediction
framework is challenging. To address this gap, we propose
RAFT. To better accommodate trajectory prediction scenarios,
we calculate multiweighted reputation values based on the
similarity of vehicle trajectories and design a reputation-based
consensus process to minimize FL costs. Additionally, DP [11]
is incorporated to further enhance the privacy protection of
shared local trajectory models with reputation data.

III. PROPOSED RAFT MODEL

In this article, we address the inefficiencies and security
concerns associated with current trajectory prediction methods
by proposing a novel AFL model. This model is designed to
effectively mitigate issues related to inefficient training and
privacy leakage in existing methods.

A. Collaborative Data Sharing and Trajectory Prediction
Framework

We propose a practical framework for trajectory prediction
within a distributed data-sharing scenario involving multiple
participants. Each participant has their own data and is
willing to share it to realize the collaborative task, but we
cannot exclude the existence of malicious sharers who try
to interfere with the trajectory prediction task. In addition,
the vehicular network employs vehicle-to-vehicle (V2V) and
vehicle-to-RSU communications, with RSUs equipped with
mobile-edge computing servers that provide computational
and storage capabilities. Fig. 1 illustrates the architecture of
the proposed data-sharing system. Vehicles collect trajectory
data and train local graph models, which they share with
RSUs. The RSUs then communicate with MBSs to upload

Fig. 1. Architecture of secure data-sharing solution.

these local models. After achieving consensus, the federated
global model is downloaded by the RSUs and broadcast to the
vehicles. Importantly, the permissioned blockchain facilitates
data retrieval and manages data-sharing transactions, ensuring
that only authorized participants can access and share relevant
data while preserving data privacy and security.

Building upon the framework, we specifically focus on the
scenario involving N vehicle participants and a joint dataset
D = D1, D2, . . . , Dn. For any vehicle vreq ∈ vi participating in
the data-sharing request, its local dataset Di ∈ D contains his-
torical trajectory data X ∈ R

τ×n×2, representing observations
at time step T

X =
[
P(1),P(2), . . . ,P(T )

]
(1)

where P(t) = [[xt
0, yt

0], [xt
1, yt

1], . . . , [xt
n, yt

n]] ∈ R
n×2 denotes

the coordinates of all observations at time t, and n represents
the number of observations. Following GRIP++ [23], we also
use both fixed and dynamic graphs to capture the complex
interactions between different types of traffic participants.
We output trajectory predictions using the encoder–decoder
network, and apply the global coordinate system which defined
in [21]. The output Y ′ ∈ R

T×n×2 predicts the future positions
of all observations from time step T + 1 to T + Tf

Y ′ =
[
P(T +1),P(T +2), . . . ,P(T +Tf )

]
(2)

where Tf represents the prediction horizon.

B. System Workflow

To enhance computational and storage efficiency under
resource constraints and ensure secure vehicle interactions,
we introduce a graph-based approach for model training and
data sharing. Initially, vehicles must undergo authentication to
become legitimate nodes within the permissioned blockchain.
After authentication, vehicles obtain certificates that allow
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Fig. 2. Working mechanisms for the proposed methodology.

them to participate in V2V data sharing and to download the
global model locally for training. Next, vehicles transmit data-
sharing requests to nearby super nodes, such as MBS and RSU,
which process these requests. Upon verifying the vehicles’
public keys [33], the super nodes begin collecting weighted
graph models from vehicles within the community. To assess
the quality of the trajectory data, participating vehicles com-
pute reputation values based on their original data. These
values are recorded as shared transactions and in the local
models of other participating vehicles within each vehicle’s
local directed acyclic graph (DAG) [34]. These models are
perturbed with DP noise to ensure privacy during FL training.
To optimize the global aggregation process and reduce latency,
we employ the PPO algorithm to group vehicles based on
their reputation evaluations. High-quality vehicle clusters are
prioritized in the deep aggregation process, ensuring that the
best data contributes most significantly to the global model.
The super nodes then collaborate to train the global model
M using an AFL approach. Once trained, the global model is
broadcasted to all committee nodes, which are responsible for
driving the consensus process in the permissioned blockchain.
The committee nodes collect transactions into blocks, verify
them, and add them to the blockchain. Finally, vehicles
optimize their local models by integrating the updated global
model, thereby improving the accuracy of their trajectory
predictions. Fig. 2 illustrates the working mechanism of our
proposed scheme.

IV. REPUTATION-BASED HYBRID BLOCKCHAIN

FOR DATA SHARING

Considering resource constraints and privacy concerns of
vehicle users, we propose a data-sharing scheme that involves
the collaboration of a federated GCN model among decentral-
ized parties to share well-trained model parameters instead of
raw data.

A. Graph-Based Trajectory Modeling

Our approach models object trajectories as weighted graphs
to capture interactions. Referring to the trajectory prediction
model GRIP++ [23], each object trajectory is organized as a
3-D array, computed for improved speed to enhance prediction
accuracy. We represent the interactions between objects using
undirected graphs G = {V, E}. The input data is processed by
a GCN, where graph operations handle spatial interactions and
temporal convolutions capture time-based features. The trajec-
tory prediction model utilizes a two-layer gated recurrent unit
(GRU) network as both the encoder and decoder. Based on this
structure, G = {V, E} is converted into a weighted graph of
vehicle trajectories. The set of nodes V is defined as V = {vit |
i = 1, . . . , n, t = 1, . . . , T }, with n denoting the total number
of objects observed in the scene. Each node vit contains its
own weights wn

i , determined by the similarity of trajectories
between vehicles, considering factors like direction, speed, and
tilt angle, as described in the following section. G is then
serialized into ordered vectors and mapped onto linear vectors,
which are combined to form a global vehicle network graph
G = {G1∪G2, . . . ,∪Gn}. For the overall graph G = {V, E}, the
number of representative vertices is denoted as k. Afterward,
the normalization properties of the vertices and edges are then
calculated, with the vertices normalized to size k and the edges
to size k × (k −1)/2. Eventually, the normalized vector Seq =
V ∪ E = {V1, . . . ,Vk}∪{E1, E2, . . . , Ek(k−1)/2}.

After that, we use cosine similarity as a distance function
to compare vehicle matrices sequentially in temporal order,
and confidence levels above 80% will fail validation. New
weighted graphs added in future moments with confidence
levels above a preset threshold will fail validation. By using
weighted graphs and the PPO algorithm, the set of vehicles
{V1, . . . , Vn} is divided into high and low reputation groups.
Through this enhanced FL mechanism, instead of sharing local
vehicle model parameters directly, the shared GCN model
retrieves and compares confidence levels. This filtering process
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excludes graphs with high trustworthiness but low similarity,
preventing the leakage of vehicle trajectory information and
improving the efficiency of the next global aggregation.

B. Differential Privacy-Enhanced Data Sharing

Our objective is to develop a secure data-sharing mechanism
for trajectory prediction scenarios that intelligently facilitates
data exchange among distributed multiuser environments while
effectively safeguarding data privacy. We consider a scenario
involving N parties (or data holders) and a joint dataset D.
Each party Pi possesses a local dataset Di in D. All N
parties unanimously agree to share data without compromising
sensitive information. Let R = {r1, r2, . . . , rm} represent the
set of data-sharing requests. When a requester submits a query
ri, our approach returns computed results instead of raw data
to fulfill the sharing requirements. After processing, the trained
global model M is sent back to the committee node. Recipients
can then use the received global aggregation model to respond
to data-sharing requests locally.

Given the large size and sensitivity of the data, we draw
inspiration from previous work [35] and utilize blockchain
for data retrieval, ensuring that the actual data remains stored
on local vehicles. We integrate GCNs with DP for quality
verification. Using a graph representation of raw data enhances
computational and storage efficiency under resource con-
straints, preserving more structural and contextual information
for validation while mitigating privacy risks. When new
data providers join, their unique identifiers (vehicle IDs)
are recorded on the blockchain along with an overview of
their data, including trajectory data, vehicle types, and data
sizes. Data profiles from multiple participants are logged as
transactions and verified by blockchain nodes using Merkle
trees [36]. Each data-sharing event is also recorded as a
transaction on the blockchain. Participants ({P1, P2, . . . , Pn})
are selected through multiparty searches in the blockchain and
grouped into communities based on their reputation values.
These communities consist of members with similar data
quality. Given the limited communication resources of IoT
devices, the retrieval process should also consider the matrix
cosine similarity between the two participants. When a user
submits a data-sharing request to a nearby node Pi, all nodes
within the identical community as Pi broadcast this request
to other vehicles observing the target during that timestamp
to initiate the retrieval process. The process is recursively
executed until all trajectory graphs for that timestamp have
been retrieved. The result is a subset of vehicles Ps ⊆ P

that fulfill the request, characterized by structural stability,
the absence of anomalous data, and minimal redundancy in
trajectory graphs, addressing the constraints posed by limited
communication resources. To ensure privacy protection in the
shared model, we apply DP to each local model mi using
the Laplace mechanism. Calibrated noise with sensitivity s is
added to the local data to train m̂i, which is expressed as

m̂i = mi + Laplace(s/ε) (3)

where ε denotes the privacy budget. Participant Pi then trans-
mits the model m̂i as a blockchain transaction, broadcasting

it to other participants for FL. Upon receiving m̂i, participant
Pi+1 trains a new local data model m̂i+1 based on the received
m̂i and its local data, then broadcasts m̂i+1 to other participants.
This iterative process continues among participants until a
global model M is generated, represented as M = {m̂1 ∪
m̂2 . . . ∪ m̂n}.

C. Trajectory Similarity-Based Reputation-Aware Data
Sharing

The mean absolute error may not be practical for real-
world trajectory prediction scenarios. Instead, we introduce a
novel evaluation metric: a reputation value derived from the
trajectory similarity among vehicles. Given the spatial corre-
lation inherent in locally collected vehicle data, incorporating
trajectory similarity into reputation calculations enhances loca-
tion awareness and data relevance. The more similar the
trajectories, the higher the relevance of the shared data from
the provider, leading to improved data quality, accuracy,
and reliability. The trajectory coefficients for a vehicle are
represented as v = {velocity, position, orientation}, with
corresponding weights ρ1, ρ2, and ρ3, and ρ1 + ρ2 + ρ3 = 1.
The similarity between two trajectory segments, Ji and Jj, of
vehicles i and j, can be expressed as SIM(Ji,Jj), is defined
by

SIM
(
Ji,Jj

) = 1 − DISS
(
Ji,Jj

)
. (4)

Here, DISS(Ji,Jj) represents the normalized dissimilarity
between the two trajectory segments, calculated using

DISS
(
Ji,Jj

) = ρ1 velocity
(
Ji,Jj

)+ ρ2 position
(
Ji,Jj

)

+ ρ3 orientation
(
Ji,Jj

)
. (5)

We posit that DISS(Ji,Jj) depends on the disparities in
velocity, position, and orientation between the two trajectory
segments. The velocity difference is given by

velocity
(
Ji,Jj

) =
∣∣Wave(Ji) − Wave

(
Jj
)∣∣

max
[
W(Ji), W

(
Jj
)] (6)

where W(Ji) and W(J j) represent the velocities of vehicles
i and j during their respective trajectory segments. Wave (J i)
and Wave (Jj) are the average velocities. The position(Ji,Jj)

shows the variance in the position between the trajectory
segments. The number of sampled points for Ji and Jj during
the time window T are denoted as e and k, respectively. The set
of sampled points in temporal order are {Pi1, Pi2, . . . , Pie} and
{Pj1, Pj2, . . . , Pjk}. We employ the longest common sequence
(LCS) method to measure the similarity of trajectory segments.
For trajectory segments Ji and Jj, the LCS is described
as LCS(Ji,Jj) = {Pie = Pjk | e = k}, where e ∈
{1, 2, . . . , E}, k ∈ {1, 2, . . . , K}. Therefore, the equation for
the difference in position between the trajectory segment
position(Ji,Jj) is provided as follows:

position
(
Ji,Jj

) = max(e, k) − num
[
LCS

(
Ji,Jj

)]

max(e, k)
(7)

where num [ LCS(Ji,Jj)] is the number of points in the LCS
of the trajectory segments Ji and Jj. The directory difference
between the two trajectory segments is the angle between the
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two trajectory segments. Here, we employ ϕ as the angle
between the trajectories Ji and Jj to represent the direction.
More precisely

orientation
(
Ji,Jj

) =
{

sin ϕ
2 , 0 < ϕ ≤ π

2
1
2 + |sin(ϕ+ π

2 )|
2 , π

2 < ϕ ≤ π.
(8)

1) Local Opinions for Subjective Logic: In the case of two
vehicles, the reputation between vi and vj can be formally
described as a local opinion vector ωi→j := {ri→j, di→j, ui→j},
where ri→j, di→j, and ui→j denote trust, distrust, and uncer-
tainty, respectively. These components satisfy the condition
ri→j+di→j+ui→j = 1, with ri→j, di→j, and ui→j each confined
within the range [0, 1]. The definitions of these components
are given by

⎧⎪⎨
⎪⎩

ri→j = (
1 − ui→j

)
α

α+β

di→j = (
1 − ui→j

) β
α+β

ui→j = 1 − si→j

(9)

where β represents the number of negative events, and α

represents the number of positive events. The uncertainty ui→j

in the local opinion vector depends on the communication
quality si→j between vehicles i and j. Here, si→j denotes the
probability of successfully transmitting data-sharing request
packets during communication. Based on the local opinion
vector ωi→j, the reputation value Ri→j, representing the
expected belief that vi provides true and relevant data to vj, is
given by

Ri→j = ri→j + γ ui→j (10)

where the constant γ , assigned by the vehicle, measures
the impact of uncertainty on the vehicle’s reputation. It is
recommended to initially set γ to 0.5.

2) Combine Local Opinions With Suggested Opinions:
When evaluating the reputation of a vehicle, the subjec-
tive opinions of neighboring vehicles should be considered
alongside the opinion of the requesting vehicle. We combine
the subjective opinions of different recommenders into a
unified opinion, denoted as ωrec

x→j :={rrec
x→j, drec

x→j, urec
x→j}. The

aggregation process is as follows:
⎧⎪⎨
⎪⎩

rrec
x→j = 1∑

x∈X δx→j

∑
x∈X δx→jbx→j

drec
x→j = 1∑

x∈X δx→j

∑
x∈X δx→jdx→j

urec
x→j = 1∑

x∈X δx→j

∑
x∈X δx→jux→j

(11)

where x ∈ X represents the set of neighboring vehicles that
interact with vj. After receiving data from the data provider, the
data requestor forms a local opinion. To avoid spoofing, this
local opinion is also considered in the final reputation evalu-
ation. The final opinion vector ωfinal

x→j := {rfinal
x→j , dfinal

x→j , ufinal
x→j },

where rfinal
x→j , dfinal

x→j , and ufinal
x→j are calculated as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

rfinal
i→j = ri→jurec

x→j+rrec
x→jui→j

ui→j+urec
x→j−urec

x→jui→j

dfinal
i→j = di→jurec

x→j+drec
x→jui→j

ui→j+urec
x→j−urec

x→jui→j

ufinal
i→j = urec

x→jui→j

ui→j+urec
x→j−urec

x→jui→j
.

(12)

Fig. 3. Reputation-aware data-sharing mechanism.

The final reputation of vi toward vj is then calculated as

Rfinal
i→j = rfinal

i→j + γ ufinal
i→j . (13)

These reputation values are incorporated into the DAG
as parameters for training models. The DAG consists of
nodes representing both data-sharing events and training
model parameters, with edge connections established through
approval relationships between transactions. These connec-
tions allow nodes to interact and connect with each other.
Vehicles maintain and update DAGs locally, asynchronously
achieving consistency with other vehicles. Each vehicle dis-
seminates its latest DAG, including transactions and approval
relationships, to neighboring vehicles. This approach prop-
agates updated DAGs, maintains loose consistency among
vehicles, reduces computational intensity, and enhances global
robustness. The specific process is illustrated in Fig. 3.

D. Consensus: Proof of Reputation

Transforming the data-sharing problem into a model-sharing
problem not only enhances the privacy of data holders but
also allows the GCN model to supply essential information for
new sharing requests effectively. This transformation preserves
vehicle trajectory features more effectively during data fusion.
However, prevailing consensus mechanisms like Proof of
Work in data sharing often result in high computational
and communication costs. To address these challenges, we
propose implementing the FL authorized consensus Proof-of-
Reputation (PoR) protocol. PoR integrates vehicle reputation
values into the consensus process, optimizing node computa-
tional resources. When data-sharing requests occur, consensus
committee members are chosen by retrieving the relevant
blockchain nodes. This committee supervises the consensus
process and gains insights into the data model associated
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with the requested data. AFL seeks to develop a worldwide
information model M, which delivers an effective response
M(Req) to inquiries concerning data sharing, thereby achiev-
ing the intended objective.

In particular, committee leaders are selected based on
their reputation scores, ensuring that the most reliable nodes
are responsible for guiding the consensus process. As each
committee node trains a local data model, it is critical to verify
and measure the quality of these models during consensus.
We evaluate the performance of the trained local models
by assessing their prediction accuracy, which is crucial in
trajectory prediction tasks. Specifically, the model is trained
as a regression task, and the total loss for each prediction task
is calculated as follows:

Loss = 1

T

T∑
t=1

∥∥∥Yt
pred − Yt

GT

∥∥∥ (14)

where T represents the number of future time steps, and
Yt

pred and Yt
GT denote the predicted position and ground truth

at time step t, respectively. For each committee node, a
trained global model M and a local model m̂i are obtained
after asynchronous training. During the consensus process,
committee node Pi sends its trained model m̂i to the next
committee node when responding to a data-sharing request.
The transmission is recorded as a model transaction tm̂i along
with its corresponding loss (m̂i). Pi has a pair of public and
private keys (PKi, SKi) to encrypt and sign the message,
sending the encrypted message E(SKi(tm), PKi) to the other
committee nodes. All model transactions are then collected
and stored locally as potential blocks by committee node Pj.
As part of the training procedure, Pj validates all transactions it
receives by computing the loss defined in (14). The validation
loss for Pj, denoted as Lossu(Pj), is calculated using the
following equation:

Lossu(Pj
) = γ · Loss

(
Mj
)+ 1

n

∑
i

Loss
(
m̂i
)

(15)

where γ represents a weighting parameter that indicates the
contribution of Pj to the global model, and Loss(Mj) represents
the loss of the local training model m̂j. The value of γ is
determined by the size of the training data of Pj relative to
that of other participants, calculated as γ = 1 + |dj|/∑i |di|.

Leveraging the aforementioned approach, we achieve effec-
tive and interpretable FL for trajectory prediction tasks. By
representing vehicle trajectory data as a normalized weighted
graph, we ensure the preservation of critical private param-
eters. To prevent data redundancy, we employ a multiparty
query approach that eliminates vehicles with high similarity
among neighboring nodes while maintaining privacy protec-
tion. Recognizing that the quality of vehicle data directly
influences the parameter fusion outcomes in the FL training,
we introduce a reputation mechanism to address this issue.
This mechanism utilizes reputation values calculated from the
private trajectory data of noneliminated vehicles, which are
then submitted to reviewers for further grouping. The detailed
grouping methodology will be discussed in Section V.

The complete process of our proposed reputation-driven
hybrid blockchain FL framework is provided in Algorithm 1.

Algorithm 1 Reputation-Driven Hybrid Blockchain FL
Framework

1: Input: The registering vehicles as participating nodes
V = {vit | i = 1, · · · , n, t = 1, · · · , T }, the local model of
vehicle i, mi ∈ M. Vote the delegates r1, r2, . . . , rn.

2: Input: Initialize the permissioned blockchain B and DAG.
Initialize the initial global model M0.

3: Output: data model M
4: for each episode e do
5: Select a leader r0 from delegates
6: for each time slot t do
7: for each vehicle vit ∈ V do
8: vit retrieves global model Mt−1 from permissioned

blockchain B
9: vit executes the local training on its local trajectory

data
10: vit retrieves local model updates from DAG
11: vit calculates reputation based on Eq. (13), and

upload new reputation segment.
12: vit executes local aggregation and obtains updated

local model mi(t)
13: Construct differential private data model m̂i with

previously received models
14: Broadcast m̂i to the other participants who are

engaged in the data sharing process
15: vit adds the parameters of model mi(t) as a trans-

action to the DAG
16: end for
17: end for
18: The leader r0 retrieves the current verified updated

models from DAG
19: r0 executes the reputation-based PPO algorithm, assign-

ing higher weights to grouped high-reputation vehicle
trajectory models, which are then aggregated into M(e)
after global federated learning

20: r0 broadcasts M(e) to other delegates for verification,
and collects all transactions into a new block

21: r0 appends the block including the global model M(e)
to the permissioned blockchain

22: end for
23: return The final global model M the requester

V. ENHANCED ASYNCHRONOUS FEDERATED LEARNING

WITH PPO CLUSTERING ALGORITHM BASED ON

VEHICLE REPUTATION

In this section, we tackle the challenges of insufficient
heterogeneous model aggregation and significant delays in
global model updates in FL. We achieve this by integrat-
ing the proposed reputation evaluation mechanism into an
interpretable AFL framework which employs the reputation-
enhanced PPO algorithm.

A. Graph Asynchronous Federated Learning for Trajectory
Prediction

In the IoV context, varying computational power and
dynamic communication conditions among vehicles result
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Fig. 4. Reputation-driven PPO vehicle clustering algorithm optimizes AFL to complete global model aggregation and improve vehicle local models.

in disparate learning times. Consequently, the slowest par-
ticipant dictates the duration of each learning iteration,
causing other participants to wait to maintain synchroniza-
tion. Currently, most applications of FL across various fields
use synchronous federated algorithms, such as FedAvg [37],
which enhances data security in multiclient model training.
However, synchronous FL (SFL) suffers from high commu-
nication costs and extended waiting times for idle nodes,
complicating training for tasks with spatial and temporal
dependencies and delaying global aggregation. Several studies
have explored asynchronous learning mechanisms to enhance
learning performance [38], [39], but applying these mecha-
nisms to trajectory prediction may result in suboptimal node
selection, as their lack of interpretability can introduce biases
in vehicle evaluations. To overcome these challenges, this arti-
cle introduces an AFL approach for trajectory prediction. By
incorporating the proposed reputation evaluation mechanism,
this method groups nodes using the enhanced PPO algorithm.
This approach facilitates asynchronous training among trusted
vehicle clusters, improving the efficiency of model updates
and aggregation.

With the filtering and reputation value calculations from
the previous section, we obtained a set of vehicles with
distinct features. Each vehicle, vi, performs local aggrega-
tion asynchronously within its operational range to enhance
the quality of its locally trained model. Vehicles preserve
and update their DAGs locally to maintain asynchronous
consistency with other nodes. In asynchronous consensus,
vehicles reach agreement based on historical states rather
than the current state. Vehicle i sends updates to its local,
DAGi, and then transmits these updates to nearby vehicles
using a gossip scheme to achieve synchronization. This
scheme propagates DAG updates across neighboring vehi-
cles, ensuring loose consistency and reducing computational
intensity. Although AFL improves aggregation efficiency,

the challenge of vehicle grouping remains. Limitations arise
from exclusively conducting asynchronous local aggregation
on nearby local vehicles to obtain a global model, as it
fails to adapt to dynamic traffic conditions and thus cannot
effectively optimize local prediction models. To address this,
we propose the PPO algorithm with an innovative reward
feedback mechanism driven by reputation evaluation. As
illustrated in Fig. 4, this mechanism prioritizes the aggrega-
tion of high-reputation vehicles, ensuring that more reliable
vehicles contribute more significantly to the global model.
This method not only improves the quality of local models
but also enhances the global aggregation model by incorpo-
rating deep aggregation from vehicles with high reputational
trust.

B. Reputation-Based PPO Vehicle Clustering Algorithm

To minimize execution time and enhance model accuracy,
we propose a reputation-based vehicle clustering approach
that categorizes vehicle nodes based on their reputation
values. During the global aggregation phase, the disparate
computational resources and fluctuating communication con-
ditions among vehicles can hinder efficient execution. To
address this, we propose selecting participating vehicles at
each timestamp based on their reputation values, ensur-
ing that each cluster contains no more than n vehicles.
This method prioritizes the aggregation of trajectory graphs
from high-reputation vehicles, which are indicative of high
data quality, thereby improving the global aggregation
process.

Unlike conventional reinforcement learning, which typically
evaluates an agent’s performance-based solely on accuracy
loss, our approach incorporates data characteristics into node
clustering. We introduce the Reputation of Learning (RoL)
to represent the reputation value of vehicle i during the
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Algorithm 2 PPO-Based Node Clustering Algorithm

INPUT: initial policy parameters θ0, initial value function
parameters φ0
for k = 0, 1, 2, . . . iterations do

Collect set of local model Mk = {
m̂i
}

by running policy
πk = π(θk) in the environment.

Compute rewards-to-go R̂t

Compute advantage estimates Ât, (using any method of
advantage estimation) based on the current value function
Vφk

Update the policy by maximizing the PPO objective:

θk+1 = arg max
θ

1

|Dk|T
∑
τ∈Mk

T∑
t=0

min

(
πθ (at | st)

πθk(at | st)
Aπθk (st, at), g

(
ε, Aπθk (st, at)

))

typically via stochastic gradient ascent with Adam.
Fit value function by regression on mean-squared error:

φk+1 = arg min
φ

1

|Dk|T
∑
τ∈Mk

T∑
t=0

(
Vφ(st) − R̂t

)2

typically via some gradient descent algorithm.
end for

aggregation process in time slot t, defined as follows:

Ct
r =

∑
i∈VP

σ t
i

(
wt, di

) =
∑
i∈VP

∑
j

L

(
yj − 1

Rt
(
xj
)
)

(16)

where wt represents the completed combined model in slot t,
and di = {(xj, yj)} represents the training data of vehicle i. We
define the local learning time cost and communication cost of
vehicle i as follows:

Ct
a(i) = di · βm

ξi(t)
, Ct

u(i) = |wi|
τi

(17)

where βm denotes the CPU cycles required to train model m
per iteration. The total time consumption function is given by

Ct
e = 1

|VP|
|VP|∑
i=1

(
Ct

a(i) + Ct
u(i)

)
. (18)

In this way, the total cost of FL in time slot t can be expressed
as

Ct
f

(
λt) = Ct

r + Ct
te (19)

where λt = [λt
i] in the time step t is an indicator vector

for vehicle selection, with λt
i = 1 indicating activation and

λt
i = 0 indicating the opposite. We formulate the problem as a

combinatorial optimization problem using a Markov decision
process, denoted as M = (S, V, Pv, Cv). The node selection
problem can be expressed as

min
λt

Ct
f

(
λt) (20a)

s.t. λt
i ∈ {0, 1} ∀i (20b)

∣∣pi|λi=1(t) − pc(t)
∣∣ ≤ r2

0 (20c)

where (20c) ensures that the distance between the selected par-
ticipating vehicles and the computed centroid cannot exceed
a finite distance r0. We use PPO to solve the problem (20a),
which involves updating the system policy based on a value
function.

We utilize PPO to determine the optimal resolution for vehi-
cle reputation categorization in AFL. At each time slot t in FL,
the system state is represented by st = {τ (t), ξ(t), γ (t),λ(t −
1)}, where τ (t) denotes the wireless data rate between vehi-
cles, ξ(t) represents the available computing resources of the
vehicles, γ (t) indicates the reputation of the vehicles, and
λ(t − 1) signifies the selection state of the vehicles from the
previous time slot. The action taken at time slot t, denoted
by λt = (λt

1, λ
t
2, . . . , λ

t
n), corresponds to a vehicle selection

decision and can be framed as a 0-1 problem. Specifically,
λt

i = 1 when vehicle i is selected as a node with a
high reputation value, and λt

i = 0 otherwise. Our primary
contribution lies in the customization of the reward function.
This function is designed as follows.

1) Add 1 to the reward for selecting a vehicle with a high
reputation value.

2) Subtract 1 from the reward for selecting a vehicle with
a low reputation value.

3) Subtract 10 from the reward for selecting a vehicle with
a low reputation value for five consecutive times and
end the round.

4) Reward 20 points if the number of selected high-
reputation vehicles reaches a predefined threshold, and
ends the round.

The reward function R(st, λt) is used to assess the impact
of an action λt taken while in state st. The reward function is
formulated as

R(st, λt) = − 1∣∣∑n
i=1 λi

∣∣
n∑

i=1

Ct
i · λt

i

= − 1∣∣∑n
i=1 λi

∣∣
(

n∑
i=1

λi

(
di · βm

ξi(t)
+ |wi|

τi

)

+
n∑

i=1

λiσ
t
i

(
wt, di

))
. (21)

The overall cumulative reward is given by

E

[
T−1∑
t=0

γ R(st, λt)

]
(22)

where γ ∈ (0, 1] is the reward discount factor. The PPO
algorithm seeks to maximize the reputation accumulation by
solving the following optimization problem:

λ = arg maxE

[
T−1∑
t=0

γ R(st, λt)

]
. (23)

Through Algorithm 2, we can identify the groups of vehicles
with high and low reputations. The vehicle feature parameters
from each group are then combined, followed by a global
fusion process, prioritizing the high-reputation group for deep
aggregation.
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(a) (b) (c)

Fig. 5. Datasets used in the experiments: the NGSIM dataset features
vehicle trajectory data collected by multiple digital cameras under various
traffic conditions, including light, moderate, and heavy congestion on real
highways. The overhead views of the two study areas, US-101 highway [41]
and I-80 highway [40], are shown in (a) and (b), respectively, as obtained
from Google Maps. The ApolloScape trajectory dataset [42] comprises data
collected by a vehicle named “Apollo acquisition car” during rush hours in
urban environments. Our proposed approach is validated using these datasets
across different traffic scenarios. (c) ApolloScape trajectory.

VI. EXPERIMENTS

In this section, we first present the well-established datasets
utilized in our experiments, followed by an overview of the
evaluation metrics employed. We then explore the impact of
various model components on prediction performance and
compare our approach with previous methods. Additionally,
we examine how different iterations of the model affect
convergence and analyze the influence of varying numbers
of bad nodes on model predictions. All experiments are
conducted on a desktop running Ubuntu 20.04, equipped with
a 2.30-GHz Intel Xeon E5-2686 v4 CPU, 64 GB of memory,
and an NVIDIA 3090 Ti Graphics Card. Our code will be
available at https://github.com/lucasc928/TPFL.

A. Datasets

We evaluated our proposed method RAFT on well-known
real-world datasets: NGSIM [40], [41], and ApolloScape
Trajectory dataset [42], as shown in Fig. 5. The basic info is
listed in Table I. NGSIM contains two road segment datasets,
US-101 and I-80. Referring to the method [21], [43], [44] for
data segmentation of the training set and testing set, a quarter
of each of the three road condition data is selected as the test
set. Each trajectory is segmented into 8 s, the first 3 s are used
as training data, and the last 5 s are used as training labels. The
ApolloScape Trajectory dataset was gathered in an urban area
during rush hour by a vehicle called the Apollo acquisition
car. The data primarily comprises vehicle trajectories that are
based on object detection and tracking algorithms. During the
initial phase, we adopt GRIP++ [23] to select 20% of the
sequences for validation purposes, while the remaining 80%
is utilized as the training set.

TABLE I
DATASET PROFILE

B. Model Configuration

In this part, we provide the detailed configuration of our
model. Our model is built upon GRIP++ [23], where objects
are considered neighbors if they are within 25 feet of each
other. We employ a 3-layer GCN, with 64 units per layer,
followed by temporal convolution layers using a convolutional
kernel of size (1×3). To prevent overfitting, we apply dropout
with a probability of 0.5 after each GCN layer. The encoder
and decoder of the prediction model are both 2-layer GRU
networks. We train the model using the Adam optimizer with
default settings from the PyTorch Library, a batch size of 64,
and 50 epochs.

To achieve a balance between stability and time efficiency,
we set the global aggregation frequency to 5 epochs (see
Section VI-D4 for further discussion). For blockchain inte-
gration, we use the default parameter settings in Hyperledger
Fabric [45]. A new block is generated when any of the
following conditions are met: the waiting time for the next
invoke reaches 2 s, the number of invokes reaches 10, or the
block size reaches 10 MB.

For the PPO algorithm, a multilayer perceptron policy
network is used with two hidden layers of 64 units each. Key
hyperparameters include a learning rate of 0.00025, 2048 steps
per update, a batch size of 64, and 10 training epochs. We
set the discount factor at 0.99 and the generalized advantage
estimation λ at 0.95, with a clipping range of 0.2. The entropy
coefficient is 0.01, and the value function coefficient is 0.5.
To regulate policy updates, we use a maximum gradient norm
of 0.5 and a target KL divergence of 0.01, training for 10 000
timesteps.

C. Metrics

To rigorously evaluate the proposed methodology, we
selected several well-established metrics regarding the state of
the art in the field [46], each of which captures key aspects
of performance in our specific application domain. The root-
mean-square error (RMSE) is adopted for its sensitivity to
larger errors, thus reflecting the overall prediction accuracy.
The average displacement error (ADE) and final displacement
error (FDE) are selected to measure the trajectory prediction
accuracy over time and at the final timestep, respectively,
which are critical for understanding the precision and reliabil-
ity of the proposed model.

D. Ablation Study

To demonstrate the advantages of our proposed approach,
we performed several ablation experiments. This sec-
tion presents the results and analysis of these experiments.
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Fig. 6. Influence of different components.

1) Influence of Different Components: To evaluate the
effectiveness of various components in our framework, we
conducted ablation experiments on the ApolloScape Trajectory
dataset. We considered five variants: basic encoder–decoder
network (GRU-based), w/o reinforcement learning, w/o DP,
w/o AFL, priority aggregation of low reputation vehicles
(Low-R), and our complete model. As shown in Fig. 6, the
basic encoder–decoder network produces the highest error.
This is mainly because it does not consider how vehicles
interact with each other. GRU models are designed to focus
on sequential data but fail to capture the complex relationships
between vehicles that affect their trajectories. This lack of
interaction modeling leads to lower prediction accuracy. When
we remove the reputation-based PPO module, ADE increases
noticeably. This underscores the critical role of our PPO-based
node grouping approach in enhancing trajectory prediction.
By focusing on data from high-reputation vehicles and giving
them more weight, we reduce the impact of bad or noisy
data. Without this mechanism, the model struggles to handle
unreliable data, which harms the predictions. The DP also
plays an important role. It enforces constraints to filter out
abnormal data, resulting in more robust and secure model
aggregation. Without DP, the model becomes more vulnerable
to bad data, which could come from attacks or mistakes. This
balance between protecting data and keeping quality high is
important for practical use. It is noteworthy that the absence
of FL leads to lower prediction accuracy compared to the full
model. This emphasizes the effectiveness of reputation-based
grouping aggregation in alleviating the challenges associated
with heterogeneous data fusion and enhancing trajectory
prediction accuracy. Finally, giving priority to low-reputation
vehicles during aggregation leads to worse prediction results.
This confirms that high-reputation vehicles provide higher-
quality data. Low-reputation vehicles are more likely to
contribute noisy or incorrect data, which disrupts the model’s
learning process. By focusing on high-reputation vehicles, we
can maintain the quality of the aggregated data, ensuring more
accurate predictions.

2) Influence of DRL Methods: We compared the learning
results of the PPO algorithm and the DQN algorithm using
the NGSIM and ApolloScape datasets. Both algorithms were

Fig. 7. Average accumulated episode reward of the PPO algorithm during
training on different datasets.

Fig. 8. Average accumulated episode reward of the DQN algorithm during
training on different datasets.

configured with identical network layers, neurons, and training
parameters. Figs. 7 and 8 illustrate that the PPO algorithm
demonstrates superior stability and adaptability across both
datasets. PPO converges more quickly and reliably follow-
ing positive feedback compared to DQN. Furthermore, our
experiments revealed that the PPO algorithm achieves a 34.5%
reduction in training time relative to the DQN algorithm. This
comparison highlights the advantages of PPO in terms of
both convergence speed and training efficiency, making it a
more effective choice for the trajectory prediction tasks in our
framework.

3) Influence of Bad Nodes: To evaluate the impact of bad
nodes on different modules within our framework, we assessed
how varying amounts of bad nodes affect the ADE. We
randomly selected a certain number of data providers at each
iteration and manipulated their data to introduce anomalies.
Fig. 9 shows that without DP, the ADE varies with the number
of bad nodes. Surprisingly, an increased number of bad nodes
can result in a lower ADE. This occurs because the PPO-based
vehicle grouping, which assigns low-quality data providers to
less critical aggregation groups, reduces their negative impact
on the model.

In contrast, Fig. 10 shows the effect of bad nodes when
the DP module is active. In this case, the number of bad
nodes has no significant impact on the ADE, demonstrating the
effectiveness of DP in protecting the model from the influence
of anomalous data. The DP module enforces constraints on the
data shared by each provider, which prevents the propagation

Authorized licensed use limited to: Texas Tech University. Downloaded on April 29,2025 at 06:12:37 UTC from IEEE Xplore.  Restrictions apply. 



7416 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 6, 15 MARCH 2025

Fig. 9. Impact of bad nodes on ADE w/o DP.

Fig. 10. Impact of bad nodes on ADE: our model (blue solid line) versus
w/o reinforcement learning (orange solid line) versus w/o FL module (red
solid line).

of harmful or noisy data throughout the aggregation process.
As a result, even with an increasing number of bad nodes, the
model maintains high accuracy and stability.

These results emphasize the complementary strengths of
both the PPO-based grouping and the DP module in handling
bad nodes. While PPO helps to manage the impact of unre-
liable data by dynamically adjusting the aggregation process,
DP provides an additional layer of protection by filtering
out anomalies at the data-sharing level. In combination, these
mechanisms ensure that the presence of bad nodes does
not significantly degrade the performance of the trajectory
prediction model. In real-world scenarios, where data quality
can vary widely, these features are crucial for maintaining
model robustness and reliability.

4) Frequency of Aggregation: We investigated how differ-
ent local and global aggregation frequencies impact prediction
accuracy and explored the effect of varying the invocation
frequency of the DP module. As illustrated in Fig. 11, increas-
ing both local and global aggregation frequencies results in
faster convergence and enhanced prediction accuracy. The
improvement can be attributed to the fact that more frequent
updates allow the model to refine its parameters more often,
enabling better incorporation of new information from multiple
vehicles and leading to more accurate trajectory predictions.
This highlights the importance of regular updates in dynamic
environments like vehicular networks, where traffic patterns
can change rapidly. After testing several combinations, we
selected a global aggregation frequency of 5 epochs. While
a higher frequency of 3 epochs provides faster convergence,
it introduces greater variability in accuracy across iterations,

Fig. 11. Effect of global aggregation frequency on ADE.

Fig. 12. Effect of DP module invocation frequency on ADE.

compromising stability. On the other hand, a frequency of 7
epochs, although stable, slows down convergence and reduces
efficiency. By setting the global aggregation frequency to 5
epochs, we achieve a balance between convergence speed and
stability, which is essential in dynamic vehicular networks
where both performance and time efficiency are critical.

We also conducted experiments to analyze how differ-
ent frequencies of invoking the DP module affect model
performance. As shown in Fig. 12, invoking DP more fre-
quently, such as every ten iterations, improves prediction
accuracy by managing privacy without significantly affecting
model performance. However, too frequent invocations can
lead to increased computational overhead, slowing down the
training process. Conversely, invoking DP less frequently,
say every 50 iterations, results in lower accuracy and makes
the model more vulnerable to privacy risks. Considering
the tradeoffs between accuracy, computational efficiency, and
privacy management, we chose an invocation frequency of
30 iterations. This balance helps the model maintain high
predictive accuracy while effectively protecting privacy.

The interaction between aggregation frequency and DP
invocation is particularly noteworthy. Higher aggregation
frequencies allow for faster learning, but without proper
privacy controls, this can lead to vulnerabilities, especially
in scenarios where data from different vehicles vary sig-
nificantly in quality or sensitivity. By balancing frequent
aggregation with frequent DP invocation, our framework
ensures that the benefits of rapid model updates are not
compromised by security risks. This balance is crucial for real-
world applications, where both performance and privacy are
important.
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Fig. 13. Impact of private budget ε on ADE in different datasets.

5) Impact of Privacy Budget: To assess the effect of
DP hyperparameters on prediction accuracy and to balance
data utility with privacy, we examine the privacy budget ε

ranging from 0.1 to 1.0 across different datasets. As depicted
in Fig. 13, in the ApolloScape dataset, setting ε < 0.3
significantly diminishes data utility due to excessive noise,
while stability is observed with ε ≥ 0.3. However, very
high values of ε undermine privacy protection. Consequently,
ε = 0.3 offers a good compromise between privacy and data
utility. In contrast, for the NGSIM dataset, which contains
a larger number of vehicles and more complex data, we
observed that a slightly higher privacy budget of ε = 0.4
is needed to maintain a similar balance. This difference can
be attributed to the scale and complexity of the dataset.
With more vehicles and interactions to account for, the
model requires a slightly higher privacy budget to prevent
overnoising, ensuring that the essential patterns within the
data remain intact. Therefore, ε = 0.4 provides the best
tradeoff for this dataset, allowing the model to achieve accurate
predictions while still offering a reasonable level of privacy
protection.

6) Impact of Reputation Quantization Mechanism: To
demonstrate the superiority of our proposed interpretable
reputation reward mechanism as a quantitative metric for
optimizing FL, we conducted ablation experiments on the
NGSIM dataset. Specifically, we replaced our AFL algorithm
with the traditional SFL scheme FedAVG [37] and used
RMSE as the trajectory prediction loss for uploading local
parameters to the server for vehicle grouping. As depicted in
Fig. 14, the traditional SFL scheme yielded inferior prediction
results compared to the AFL scheme. In dynamic trajectory
prediction scenarios, waiting for inefficient vehicle nodes to
complete local model aggregation inevitably leads to sub-
optimal global model outcomes. Additionally, substituting
RMSE for reputation values for reinforcement learning-based
vehicle grouping resulted in a reduction in trajectory prediction
accuracy. This is because loss functions provide an incomplete
assessment of the impact of vehicle nodes on both local
and global aspects. In dynamic traffic environments, vehicles
continuously influence each other, leading to unavoidable
biases in trajectory prediction. Discarding vehicle nodes solely

Fig. 14. Impact of reputation quantization mechanism.

based on significant biases and rewarding vehicles that con-
sistently exhibit smooth and straight trajectories would be
unfair. In contrast, our proposed reputation quantification
mechanism, which focuses on vehicle data quality and local
trajectory similarity, overcomes these limitations. Prioritizing
high-quality data and similar trajectory models for deep aggre-
gation enhances the global model’s accuracy and guidance
value.

E. Comparison Analysis

With regard to the latest findings in DGInet [46], we have
compared our model with seven baseline methods consisting
of state-of-the-art trajectory prediction methods.

1) Encoder–Decoder [8] employs an enc–dec architecture
based on LSTM.

2) CS-LSTM [21] combines CNN and LSTM to extract
spatiotemporal features.

3) TraPHic [22] uses spatial attention pooling combined
with CNNs and LSTMs for trajectory prediction.

4) Social-GAN [47] utilizes an encoder–decoder architec-
ture as a generator and trains an additional encoder as a
discriminator for trajectory prediction.

5) GRIP [7] employs graph convolution for trajectory
prediction and integrates the results with an encoder–
decoder network.

6) Spectral [8] forecasts paths and actions using an LSTM-
based encoder–decoder network enhanced with spectral
clustering.

7) DGInet [46] combines a semi-global graph mechanism
with a convolutional graph network based on M-products
for trajectory prediction.

Table II presents a comparison of ADE and FDE for
our method against the aforementioned baseline methods.
Although our model did not achieve state-of-the-art results
overall, it demonstrates notable improvements compared to
specific methods. Specifically, on the ApolloScape dataset, our
approach reduces ADE by 11.2% and FDE by 10.2% com-
pared to GRIP and surpasses Spectral’s performance. Unlike
Spectral, which predicts trajectories for a single vehicle, our
method, along with GRIP and DGInet, predicts trajectories
for all vehicles in a traffic scenario. This aligns our approach

Authorized licensed use limited to: Texas Tech University. Downloaded on April 29,2025 at 06:12:37 UTC from IEEE Xplore.  Restrictions apply. 



7418 IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 6, 15 MARCH 2025

(a) (b) (c) (d) (e)

Fig. 15. Visualization of predicted trajectories under mild, moderate, and congested traffic scenarios, where the circled vehicles are those that GRIP++ tries
to predict, the purple solid line is the observed history, the red solid line is the future ground truth, the blue dashed line is the prediction result of our model
(5 s), and the green dashed line is the GRIP++ prediction (5 s). (a) Only one vehicle; (b) two vehicles with few interactions; (c) three vehicles with more
interactions; (d) five vehicles with some interactions in which a vehicle would conduct lane changing; and (e) heavy traffic.

TABLE II
AVERAGE PERFORMANCE COMPARISON

more closely with real-world traffic conditions, enhancing
the security and robustness of data sharing in distributed
trajectory prediction. Thus, while our model may not lead in
all metrics, its practical alignment with real-world scenarios
and unique contributions to data-sharing security make it a
valuable approach.

F. Visualization of Prediction Results

In Fig. 15, we use the NGSIM datasets to show several
prediction results under different traffic conditions, where the
circled vehicles are those that GRIP++ tries to predict, the
purple solid line is the observed history, the red solid line is the

future ground truth, the blue dashed line is the prediction result
of our model (5 s), and the green dashed line is the GRIP++
prediction (5 s). The observation range is from −90 to 90 feet.
Our model predicts trajectories 5 s into the future based on
3 s of historical data. As depicted in Fig. 15, across different
traffic scenarios, our model’s predictions (blue dashed line) are
consistently closer to the actual future trajectories (red solid
line) compared to GRIP++ (green dashed line), particularly
at the endpoints of the prediction horizon. This highlights the
superior accuracy of our approach over GRIP++ in trajectory
prediction.

The improved performance of our model is due to its ability
to capture complex vehicle interactions through a reputation-
based data-sharing mechanism, which filters out low-quality
data and focuses on high-reputation sources, ensuring more
accurate predictions. The inclusion of DP further enhances
robustness by protecting against noisy or anomalous data,
maintaining stable performance even in dynamic traffic condi-
tions. Additionally, our model excels in dense traffic scenarios,
where GRIP++ struggles due to its reliance on graph convo-
lution alone. By combining graph-based representation with
PPO for reputation-based grouping, our model adapts better
to the diverse behaviors of vehicles, leading to more precise
trajectory predictions.
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TABLE III
COMPUTATION TIME

G. Computation Time

Computational efficiency is a crucial performance metric
for autonomous vehicles. Table III presents the computation
time of our proposed approach, implemented using PyTorch.
We evaluated the prediction time for 1000 vehicles with batch
sizes of 128 and 1, respectively. Our trajectory prediction
model builds upon the GRIP++ framework. Although our
approach incurs a slightly longer computational time compared
to GRIP++, it remains competitive relative to other methods.
The additional latency is offset by the benefits of enhanced
data privacy protection and improved prediction accuracy.
Importantly, the PPO-based vehicle grouping method operates
on the server, where the pretrained PPO model is deployed.
This approach requires only periodic experience replay [48]
and asynchronous updates, thus not affecting the prediction
efficiency of the vehicles themselves.

VII. CONCLUSION

In this article, we introduced a novel framework for dis-
tributed trajectory prediction that leverages advanced graph
neural network techniques and AFL. Our approach inte-
grates an interpretable reputation quantization mechanism and
employs DP to secure data sharing. By applying PPO for
vehicle categorization based on reputation, we optimized the
efficiency of FL aggregation. Our experimental results validate
that this framework effectively handles bad nodes, enhances
the security of distributed trajectory prediction tasks, and
improves prediction accuracy. The proposed method offers a
robust solution to the challenges of data privacy and quality
in dynamic traffic environments. Future work will focus on
integrating this approach with 6G networks to further enhance
efficiency and scalability.
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