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ABSTRACT
Urban region embedding is an important and yet highly challeng-
ing issue due to the complexity and constantly changing nature of
urban data. To address the challenges, we propose a Region-Wise
Multi-View Representation Learning (ROMER) to capture multi-
view dependencies and learn expressive representations of urban
regions without the constraints of rigid neighbourhood region con-
ditions. Our model focuses on learn urban region representation
from multi-source urban data. First, we capture the multi-view
correlations from mobility flow patterns, POI semantics and check-
in dynamics. Then, we adopt global graph attention networks to
learn similarity of any two vertices in graphs. To comprehensively
consider and share features of multiple views, a two-stage fusion
module is further proposed to learn weights with external atten-
tion to fuse multi-view embeddings. Extensive experiments for
two downstream tasks on real-world datasets demonstrate that our
model outperforms state-of-the-art methods by up to 17% improve-
ment.

CCS CONCEPTS
• Computing methodologies→ Neural networks; • Informa-
tion systems→ Clustering; Data analytics.
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1 INTRODUCTION
Urban region embedding is a classical embedding problem whose
purpose is to to learn quantitative representations of regions from
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multi-sourced data. The problem has been found useful in many
real-world applications such as socio-demographic feature pre-
diction [11, 23], crime prediction [22, 24, 27], economic growth
prediction[10] and land usage classification [15, 24, 25, 27].

Urban region embedding is challenging due to the highly com-
plex nature of urban data, deep learning approaches have attracted
much interest in recent years. In particular, GNNs have shown
great potential for learning low-dimensional embeddings of graph-
structured data [1, 4, 6, 12, 20, 21]. Several existing studies that have
attempted to integrate POI data and human mobility to character-
ize regions and obtain attractive results[3, 5, 13, 14, 22, 24–27]. For
example, the methods [24, 27] learns graph embeddings by combin-
ing multi-graph. The method[27] employs an attention mechanism
and simple crosstalk operations to aggregate information, while
MFGN[24] deeply resolves the relevance of regions in fine-grained
human mobility patterns. However, existing studies have predom-
inantly focused on capturing correlations between neighboring
regions, overlook the significant influence of distant regions in com-
plex urban systems. Attention mechanism such as GAT[19] assigns
aggregation weights based solely on the influence of neighboring
nodes, and self-attention[18] solely focuses on the regions them-
selves, both approaches fail to consider the potential correlations
between regions and suffer from computational complexity[8]. As
a result, these methods produce sub-optimal embeddings and limit
the ability of the model to capture the underlying urban dynamics
and features.

To tackle these challenges, we propose a Region-Wise Multi-
Graph Representation Learning (ROMER) for effective urban region
representation with multi-view data. Our ROMERmodel adopts het-
erogeneous graph neural framework with respect to human move-
ment patterns, POI semantics and check-in dynamics. In addition,
a multi-graph aggregation module is design to capture region-wise
dependencies and non-linear correlations among regions. Finally,
we design an efficient and cost-effective attentive fusion module
that learning adaptive weights for information sharing across di-
verse views with external attention and gating mechanism to fuse
multi-view in an efficient and deeply collaborative manner.

We have extensively evaluated our approach through a series
of experiments using real-world data. The results demonstrate the
superiority of our method compared to state-of-the-art baselines,
achieving improvements of up to 17%. In addition, our method
exhibits significant computational efficiency.

2 PRELIMINARIES
In this section, we first give some notations and define the urban
region embedding problem. We partition a city into 𝑁 regions 𝑉 =

{𝑣1, 𝑣2, · · · , 𝑣𝑁 }, where 𝑣𝑖 denotes the 𝑖-th region. For a trip 𝑝 =
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(𝑣𝑜 , 𝑣𝑑 ), 𝑣𝑜 denotes the origin region and 𝑣𝑑 denotes the destination
region where 1 ≤ 𝑜, 𝑑, ≤ 𝑁 . Given the set of regions 𝑉 , we further
define the following.

Definition 1. (Human mobility feature). The human mobility
feature is defined as a trip sets P = {𝑝𝑖 |𝑝𝑖 .𝑣𝑜 , 𝑝𝑖 .𝑣𝑑 ∈ 𝑉 } that occur
in urban areas. 𝑖 = {1, 2, · · · , 𝑀}, where𝑀 is the number of trips.

Definition 2. (Semantic feature). The semantic feature describes
the functional similarity among regions. Similar regions may nec-
essarily be close in space. In this work, the semantic feature of the
region is characterized with POIs in the located region. Given a
region 𝑣𝑖 , its semantic feature is represented as:

S = {𝑠𝑖 | 𝑠𝑖 ∈ R} , 𝑖 = 1, 2, · · · , 𝑛 (1)
Definition 3. (Dynamic feature). The dynamic feature describes

the activities of POIs in regions, which integrates human activities
and POIs information. Given a region 𝑣𝑖 , its dynamic feature is
represented as:

G = {𝑔𝑖 | 𝑔𝑖 ∈ R} , 𝑖 = 1, 2, · · · ,𝑚 (2)

Urban region embedding problem.We denote the three fam-
ilies of features for a region 𝑣𝑖 as a vector 𝑒𝑖 ∈ R𝑟 , where 𝑟 is the
number of features. Then, the our final goal is to learn a mapping
function 𝐹 ,

E = 𝐹 (EV ) (3)
where EV ∈ R𝑀×𝑟 are three features of all regions in 𝑉 .

3 METHODOLOGY
The overall architecture of ROMER proposed in this paper is shown
in Figure. 1, which consists of three components: the region-wise
graph learning module, the multi-graph aggregation module and
attentive fusion module.

3.1 Region Wise Graph Learning Module
In this section, we elucidate the utilization of various types of region
dependencies for encoding multi-graph.

3.1.1 Mobility based RegionGraph. Themovement of peoplewithin
urban spaces across regions can be understood by examining their
interactions. When people travel between different origins (𝑂) and
destinations (𝐷), we can observe similarities in their patterns if
they have the same O/D region. In simpler terms, by analysing
the similarity of O/D patterns, we can identify important potential
features related to human mobility. Given a set of human mobility
𝑀 , we can use

𝑠
𝑣𝑖
𝑣𝑗 =

�� (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝑀
�� (4)

to calculate the similarity value between region 𝑣𝑜 and region 𝑣𝑑 ,
where |.| counts the size of the trip. Then we employ distributions
𝑝𝑜 (𝑣 | 𝑣𝑖 ) and 𝑝𝑑 (𝑣 | 𝑣𝑖 ) to describe the origin and destination
contexts of a region 𝑣𝑖 as follows:

𝑝𝑜 (𝑣 | 𝑣𝑖 ) =
𝑠𝑣𝑣𝑖∑
𝑣 𝑠

𝑣
𝑣𝑖

, 𝑝𝑑 (𝑣 | 𝑣𝑖 ) =
𝑠
𝑣𝑖
𝑣∑
𝑣 𝑠

𝑣𝑖
𝑣

. (5)

The two types of dependencies were defined by us based on the
source and destination context of each region, as follows,

D𝑖 𝑗

𝑂
= sim

(
𝑝𝑜 (𝑣 | 𝑣𝑖 ) , 𝑝𝑜

(
𝑣 | 𝑣 𝑗

) )
, (6)

D𝑖 𝑗

𝐷
= sim

(
𝑝𝑑 (𝑣 | 𝑣𝑖 ) , 𝑝𝑑

(
𝑣 | 𝑣 𝑗

) )
, (7)
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î ˆ
j ˆ

k

Figure 1: The architecture of ROMER consists of three key
components: A) the region-wise graph learning module, B)
the multi-graph aggregation module, and C) the attentive
fusion module.

whereD𝑖 𝑗

𝑂
denotes the dependencies between two origins,D𝑖 𝑗

𝐷
rep-

resents the dependencies between two destinations, sim(·) denotes
the cosine similarity. Based on Equation (6) and (7), we construct
region wise graphs G𝑂 and G𝐷 .

3.1.2 Semantic Region Graph. In urban environments, the descrip-
tion of regional semantics relies on the utilization of Point of Inter-
est (PoI) information. The PoI attributes encapsulate the semantic
features associated with specific regions. To incorporate the PoI con-
text into region embeddings, we leverage semantic dependencies to
effectively capture and integrate region functionality information
into the representation space. The calculation for this process can
be described as follows:

D𝑖 𝑗

𝑆
= sim

(
®𝑠𝑖 , ®𝑠 𝑗

)
. (8)

where D𝑖 𝑗

𝑆
is the semantic dependency between region 𝑣𝑖 and 𝑣 𝑗 .

We thus obtain the semantic region graph G𝑆 .

3.1.3 Dynamic Region Graph. In contrast to PoI attributes, which
solely provide information regarding the quantity of PoIs, check-in
data takes into account human activity and reflects the popularity
of each PoI category. When characterizing regions with check-in
attributes, we employ a dynamic dependency measure to determine
the significance of each check-in type within a given region. The
calculation of this measure can be described as follows:

D𝑖 𝑗

𝐺
= sim

(
®𝑎𝑖 , ®𝑎 𝑗

)
(9)

where D𝑖 𝑗

𝐺
is the dynamic dependency between region 𝑣𝑖 and 𝑣 𝑗 .

Now we construct dynamic region wise graph G𝐺 .

3.2 Multi-Graph Aggregation Module
It is observed that not only adjacent regions are relevant, but also
many distant regions are correlated. However, existing GAT based
methods [14, 27] only considers the influence of neighbouring
nodes. Inspired by [9], we utilize an improved GAT mechanism to
extract any two relevant regions in a city to assign learning weights.
Given the vertex feature h =

{
®ℎ1, ®ℎ2, . . . , ®ℎ𝑛

}
, ®ℎ𝑖 ∈ R𝐹 , where 𝐹 is
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Table 1: Performance comparison of different approaches for check-
in prediction and land usage classification.

Models Check-in Prediction Land Usage Classification
MAE RMSE 𝑅2 NMI ARI

LINE 564.59 853.82 0.08 0.17 0.01
node2vec 372.83 609.47 0.44 0.58 0.35
HDGE 399.28 536.27 0.57 0.59 0.29
ZE-Mob 360.71 592.92 0.47 0.61 0.39
MV-PN 476.14 784.25 0.08 0.38 0.16
MVGRE 297.72 495.27 0.63 0.78 0.59
MGFN 280.91 436.58 0.72 0.76 0.58

ROMER(ours) 252.14 413.96 0.74 0.81 0.68

the input dimension, the MGA layer works as follows:

𝐴𝑖 𝑗 = 𝑐𝑜𝑠𝑖𝑛𝑒 (ℎ𝑖 , ℎ 𝑗 ) ·𝑤𝑖 𝑗 =
ℎ𝑖 (ℎ 𝑗 )𝑇 ·𝑤𝑖 𝑗

∥ℎ𝑖 ∥∥ℎ 𝑗 ∥
,

𝐴𝑖 𝑗 = 𝜎 (𝐴𝑖 𝑗 ),
(10)

where 𝜎 denotes the softmax function, 𝑤𝑖 𝑗 is the weight matrix.
𝐴𝑖 𝑗 is the similarity between ℎ𝑖 and ℎ 𝑗 . Softmax function is used to
normalize the coefficients. ∥ℎ𝑖 ∥ denotes the norm of vector ℎ𝑙

𝑖
and

· is the dot product of vectors.
Next, 𝐴𝑖 𝑗 is utilized to aggregate information from all other

features in the network to each feature, by

ℎ̂𝑖 =
∑︁
𝑗∈𝑁𝑖

𝐴𝑖 𝑗ℎ 𝑗𝑤𝑖 𝑗 , (11)

where 𝑁𝑖 is all nodes in the graph except node ℎ𝑖 . ℎ̂𝑖 is the infor-
mation aggregation from the global features to the feature ℎ𝑖 .

In our model, G𝑂 , G𝐷 , G𝑆 and G𝐺 are fed in to the MAG block,
then we obtain the corresponding representation results as E𝑂 , E𝐷 ,
E𝑆 , and E𝐺 .

3.3 Attentive Fusion Module
In this section, we design attentive fusion mechanism to efficient
interchange information among multiple views.Self-attention is
widely used in existing fusion methods[18], which is at the price of
high computation. Inspired by [8], We adopt external attention to
allow information to propagate across multiple views. Given the
representations of𝑀 views {E1, E2, · · · , E𝑀 }, for each E𝑖 , we then
propagate information among all views as follows:

[𝐴𝑖 ]𝑀𝑖=1 = Norm
( [
E𝑖𝑀𝑇

𝑘

]𝑀
𝑖=1

)
, Ê𝑖 =

𝑀∑︁
𝑖=1

𝐴𝑖𝑀𝑣 (12)

where 𝑀𝑘 ∈ R𝑆×𝑑 and 𝑀𝑣 ∈ R𝑆×𝑑 are learnable parameters in-
dependent of the representations, which act as the key and the
value memory of the whole training dataset. And 𝑑 and 𝑆 are hyper-
parameters. Ê𝑖 is considered as the relevant global information
for 𝑖-th view. Meanwhile the normalization method we follow [8].
The embedding results Ê𝑂 , Ê𝐷 , Ê𝑆 , and Ê𝐺 are generated from
the above modules, linking the global information to subsequent
fusions in the model.

In order to integrate global and local region representation. We
follow the fusion mechanism in [27]. The fusion layer operates as
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Figure 2: Ablation studies for two tasks on NYC dataset. (a) MAE
and RMSE in Check-in Prediction. (b) ARI and NMI in Land Usage
Classification.

follows:
E′
𝑖 = 𝛼 Ê𝑖 + (1 − 𝛼)E𝑖 , 0 ≤ 𝛼 ≤ 1 (13)

EF =

𝑀∑︁
𝑖

𝑤𝑖E𝑖 ,𝑤𝑖 = 𝜎

(
E𝑖𝑊𝑓 + 𝑏 𝑓

)
(14)

where E′
𝑖
is the representation for 𝑖-th viewwith global information,

and 𝛼 is the weight of global information,𝑤𝑖 is the weight of 𝑖-th
view, which is learned by a single layer MLP network with the 𝑖-th
embeddings as input.

In a bid to enable the learning of the multi-view fusion layer,
we engage E in the learning objective of each view. Formally, we
update the representation of each view as:

Ẽ𝑖 =
(
E′
𝑖 + EF

)
/2. (15)

By incorporating the outputs of the base model into proposed
joint learning module, we derive region embeddings Ẽ𝑂 , Ẽ𝐷 , Ẽ𝑆 ,
and Ẽ𝐺 , on which we work out of the various learning goals.

3.4 Prediction Objectives
In order to efficiently train our model, according to [27], given the
source region 𝑣𝑖 , we model the distribution of the target region 𝑣 𝑗
as follows:

𝑝𝑂
(
𝑣 𝑗 | 𝑣𝑖

)
=

exp
(
𝑒𝑖𝑇
𝑂
𝑒
𝑗

𝐷

)
∑

𝑗 exp
(
𝑒𝑖
𝑂
𝑒
𝑗

𝐷

) . (16)

Similarly, wemodel 𝑝𝐷
(
𝑣 𝑗 | 𝑣𝑖

)
in the sameway for the distribution

of source region 𝑟𝑖 for a given destination region 𝑟 𝑗 . Then, L𝐻𝑀𝐹

is constructed by maximizing the probability of O/D occurrence.
Hence, theL𝐻𝑀𝐹 between region 𝑟𝑖 and region 𝑟 𝑗 can be computed
as:

L𝐻𝑀𝐹 =
∑︁

(𝑣𝑖 ,𝑣𝑗 )∈M
− log𝑝𝑜

(
𝑣 𝑗 | 𝑣𝑖

)
− log 𝑝𝑑

(
𝑣𝑖 | 𝑣 𝑗

)
. (17)

In order for the learned region embeddings to preserve the region
similarity across region attributes, we designed tasks to reconstruct
region correlations based on the corresponding embeddings. Taking
the Check-in property as an example, the learning objective is based
on C𝐺 and Ẽ𝐺 =

{
𝑒𝑖
𝐺

}𝑛
𝑖=1 defined as follows.

L𝑉𝐹 =
∑︁
𝑖, 𝑗

(
C𝑖 𝑗

𝐺
− 𝑒𝑖

𝑇

𝐺 𝑒
𝑗

𝐺

)2
. (18)

Similarly, we define the learning objective L𝑆𝐹 of check-in at-
tributes. In this way, the final learning objective is:

L = L𝐻𝑀𝐹 + L𝑉𝐹 + L𝑆𝐹 . (19)
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(a) Districts (b) HDGE (c) ZE-Mob

(d) MV-FN (e) MVGRE (f) Ours

Figure 3: Districts in Manhattan and region clusters.

4 EXPERIMENTS
In this section, extensive experiments are conducted to verify the
superiority of the proposed model.

4.1 Datasets and Baselines
Experiments are conducted on several real-world datasets of New
York City from NYC open data website1. We follow [27], taxi trip
data was analysed as the source of human movement data, and the
borough of Manhattan was divided into 180 zones to serve as the
study area. As shown in Figure. 3(a), the borough of Manhattan was
divided into 12 regions based on land use according to community
board [2].

This paper compares the ROMER model with the following
region representation methods, including LINE[16], node2vec[7],
HDGE[22], ZE-Mob[25], MV-PN[5], MVGRE[27], MGFN[24] etc.

4.2 Experimental Settings
For land usage classification, we clustered the region embeddings
using K-means with Normalized Mutual Information (NMI) and
Adjusted Rand Index (ARI) with settings [25]. In the case of check-
in prediction, we utilize the Lasso regression [17] with metrics of
Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
coefficient of determination (𝑅2).

4.3 Experimental Results
4.3.1 Main Results. Table. 1 shows the results of the check-in pre-
diction task and the land usage classification task. We draw the
following conclusions: (1) Our method (ROMER) outperforms all
1https://opendata.cityofnewyork.us/

baseline tasks, in particular achieving over 10% improvement in
MAE in the check-in prediction task and over 17% improvement in
ARI in the land usage classification task. (2) Traditional graph em-
bedding methods (LINE, node2vec) perform poorly because of the
local sampling approach, which may not fully express the relation-
ships between nodes. (3) While HDGE, ZE-Mob, and MV-PN utilize
multi-scale graph structures and embedding methods to capture
the multi-level features and complex relationships within the urban
system, they lack an attention mechanism that accounts for the
varying importance of nodes. (4) Both MVGRE and MGFN employ
multi-view fusion methods and attention mechanisms. However,
the long-range dependence of the regions mined by these models
is poor.

4.3.2 Ablation Study. To verify the effect of key components on
the proposed model, this paper conducts an ablation study in land
usage classification and check-in prediction tasks respectively. The
variants of ROMER are named as follows:

• ROMER-G: It is ROMER without multi-graph aggregation
Module(MGA). MGA module is replaced with the GAT[19].

• ROMER-A: It is ROMER without Attentive Fusion which is
replaced with the self-attention[18].

• ROMER-D: It is ROMER without Attentive graph fusion. The
extracted spatial features are concatenated directly.

Figure. 2 displays the experimental results of ROMER and its vari-
ants in check-in prediction and land use classification tasks. The
MGA module (ROMER-G) exhibits the most substantial impact on
performance. Without the MGA component, the MAE for the pre-
diction task increases significantly from 252.14 to 351.52, and the
RMSE increases from 413.96 to 559.98. The attentive fusion module
(ROMER-A) demonstrates the second-largest impact, affirming the
effectiveness of our constructed module in enhancing single-view
performance.

4.3.3 Visualized Analysis. To visually evaluate the clustering re-
sults, we plotted the clustering results of five methods in Figure. 3,
where the same color marks the regions in the same cluster. We
observe that the clustering results based on our method are optimal
in terms of consistency with the real boundaries of ground condi-
tions. These results suggest that the regional embeddings learned
by our model are able to represent regional functions effectively.

5 CONCLUSION
In this paper, we try to solve the urban region embedding problem
with attentive multi-view neural networks. Specially, we designed
a graph aggregation module to captures region-wise dependencies
within the urban network. To comprehensively share information
across multiple views, we designed a attentive fusion module and
fuse view embeddings with external attention and gating mecha-
nism. Extensive experimental results on real-world data demon-
strated the effectiveness of our proposed ROMER. In the future, we
will apply the proposed frewmork to addition gragh based applica-
tions.
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